Non-Abelian Chern-Simons-Higgs solutions in 2+1 dimensions

被引:10
|
作者
Navarro-Lerida, Francisco [1 ]
Radu, Eugen [2 ]
Tchrakian, D. H. [3 ,4 ]
机构
[1] Univ Complutense Madrid, Dept Fis Atom Mol & Nucl, E-28040 Madrid, Spain
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[3] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland
[4] NUI Maynooth, Dept Comp Sci, Maynooth, Kildare, Ireland
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
基金
爱尔兰科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION; ELECTRICALLY CHARGED VORTICES; GAUGE-THEORIES; INTERACTION ENERGY; SOLITON-SOLUTIONS; PLANE; MODEL; TERM;
D O I
10.1103/PhysRevD.79.065036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Non-Abelian vortices of an SU(2) Chern-Simons-Higgs theory in 2+1 dimensions are constructed numerically. They represent natural counterparts of the U(1) solutions considered by Hong, Kim, and Pac, and by Jackiw and Weinberg. The Abelian embeddings are identified, for all values of the Higgs self-interaction strength nu, resulting in both attractive and repulsive phases. A detailed analysis of the properties of the solutions reveals the existence of a number of unexpected features. For a certain range of the parameter nu, it is shown that the non-Abelian vortices have lower energy than their topologically stable Abelian counterparts The angular momentum of these vortices is analyzed and it is found that unlike the Abelian ones, whose angular momentum and energy are unrelated, there is a nontrivial mass-spin relation of the non-Abelian vortices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MONOPOLES IN NON-ABELIAN CHERN-SIMONS-HIGGS THEORY
    EDELSTEIN, JD
    SCHAPOSNIK, FA
    NUCLEAR PHYSICS B, 1994, 425 (1-2) : 137 - 149
  • [2] BOGOMOLNYI EQUATIONS FOR NON-ABELIAN CHERN-SIMONS-HIGGS THEORIES
    CUGLIANDOLO, LF
    LOZANO, G
    MANIAS, MV
    SCHAPOSNIK, FA
    MODERN PHYSICS LETTERS A, 1991, 6 (06) : 479 - 486
  • [3] Non-Abelian Chern-Simons-Higgs vortices with a quartic potential
    Blazquez-Salcedo, J. L.
    Gonzalez-Romero, L. M.
    Navarro-Lerida, F.
    Tchrakian, D. H.
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [4] DYNAMICAL CHAOS IN NON-ABELIAN CHERN-SIMONS-HIGGS THEORIES
    SRIRAM, MS
    MUKKU, C
    LAKSHMIBALA, S
    BAMBAH, BA
    PHYSICAL REVIEW D, 1994, 49 (08): : 4246 - 4257
  • [5] Non-Abelian Chern-Simons-Higgs system with indefinite functional
    Huang, Hsin-Yuan
    Lee, Youngae
    Moon, Sang-hyuck
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (03):
  • [6] Low regularity solutions to the non-abelian Chern-Simons-Higgs system in the Lorenz gauge
    Cho, Yonggeun
    Hong, Seokchang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06):
  • [7] Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor
    Chen, Shouxin
    Han, Xiaosen
    Lozano, Gustavo
    Schaposnik, Fidel A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2458 - 2498
  • [8] MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY
    HONG, JY
    KIM, YB
    PAC, PY
    PHYSICAL REVIEW LETTERS, 1990, 64 (19) : 2230 - 2233
  • [9] Majorana anyons, non-Abelian statistics and quantum computation in Chern-Simons-Higgs theory
    Marino, E. C.
    Brozeguini, J. C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [10] Bubbling solutions of mixed type for a general non-Abelian Chern-Simons-Higgs system of rank 2 over a torus
    Huang, Hsin-Yuan
    Lee, Youngae
    Moon, Sang-Hyuck
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214