ONLINE ANOMALY DETECTION IN VIDEOS BY CLUSTERING DYNAMIC EXEMPLARS

被引:0
|
作者
Feng, Jie [1 ]
Zhang, Chao [1 ]
Hao, Pengwei [2 ]
机构
[1] Peking Univ, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
[2] Queen Mary Univ London, Dept Comp Sci, London E1 4NS, England
关键词
Anomaly detection; hierarchical model; clustering;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We propose a non-parametric hierarchical event model to perform online anomaly detection in videos. A dynamic exemplar set is first used to represent observed event samples which updates itself every time when a new sample comes in. Upon this set, clusters are extracted to summarize the exemplars, offering a compact yet informative data structure for past event samples. Abnormal events are detected by both considering their dissimilarity with the model and low frequency. Experiments on real world crowd surveillance videos demonstrate the effectiveness and robustness of the proposed algorithm which shows reliable detection rates and low false alarms.
引用
收藏
页码:3097 / 3100
页数:4
相关论文
共 50 条
  • [1] Self-adaptive and dynamic clustering for online anomaly detection
    Lee, Seungmin
    Kim, Gisung
    Kim, Sehun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14891 - 14898
  • [2] Crowd Scene Anomaly Detection in Online Videos
    Yang, Kaizhi
    Yilmaz, Alper
    [J]. MID-TERM SYMPOSIUM THE ROLE OF PHOTOGRAMMETRY FOR A SUSTAINABLE WORLD, VOL. 48-2, 2024, : 443 - 448
  • [3] Human Activity Clustering for Online Anomaly Detection
    Zhu, Xudong
    Liu, Zhijing
    Zhang, Juehui
    [J]. JOURNAL OF COMPUTERS, 2011, 6 (06) : 1071 - 1079
  • [4] Online Clustering for Evolving Data Streams with Online Anomaly Detection
    Chenaghlou, Milad
    Moshtaghi, Masud
    Leckie, Christopher
    Salehi, Mahsa
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT II, 2018, 10938 : 506 - 519
  • [5] Online Anomaly Detection Based on Support Vector Clustering
    Mohammad Amin Adibi
    Jamal Shahrabi
    [J]. International Journal of Computational Intelligence Systems, 2015, 8 : 735 - 746
  • [6] Online Anomaly Detection Based on Support Vector Clustering
    Adibi, Mohammad Amin
    Shahrabi, Jamal
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2015, 8 (04) : 735 - 746
  • [7] Online droplet anomaly detection from streaming videos in inkjet printing
    Segura, Luis Javier
    Wang, Tianjiao
    Zhou, Chi
    Sun, Hongyue
    [J]. ADDITIVE MANUFACTURING, 2021, 38
  • [8] Clustering Evolving Batch System Jobs for Online Anomaly Detection
    Kuehn, Eileen
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1534 - 1535
  • [9] Data Stream Clustering for Online Anomaly Detection in Cloud Applications
    Sauvanaud, Carla
    Silvestre, Guthemberg
    Kaaniche, Mohamed
    Kanoun, Karama
    [J]. 2015 ELEVENTH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC), 2015, : 120 - 131
  • [10] Anomaly Detection in Surveillance Videos
    Anala, M. R.
    Makker, Malika
    Ashok, Aakanksha
    [J]. 2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 93 - 98