Modeling across-trial variability in the Wald drift rate parameter

被引:4
|
作者
Steingroever, Helen [1 ]
Wabersich, Dominik [2 ]
Wagenmakers, Eric-Jan [1 ]
机构
[1] Univ Amsterdam, Dept Psychol, POB 15906, NL-1001 NK Amsterdam, Netherlands
[2] Univ Tubingen, Dept Psychol, Tubingen, Germany
关键词
Cognitive modeling; Evidence accumulation; One-choice decision tasks; Reaction time modeling; Decision-making; Inverse Gaussian distribution; RESPONSE-TIME DATA; DIFFUSION-MODEL; DISTRIBUTIONS; INFERENCE; TASKS;
D O I
10.3758/s13428-020-01448-7
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
The shifted-Wald model is a popular analysis tool for one-choice reaction-time tasks. In its simplest version, the shifted-Wald model assumes a constant trial-independent drift rate parameter. However, the presence of endogenous processes-fluctuation in attention and motivation, fatigue and boredom-suggest that drift rate might vary across experimental trials. Here we show how across-trial variability in drift rate can be accounted for by assuming a trial-specific drift rate parameter that is governed by a positive-valued distribution. We consider two candidate distributions: the truncated normal distribution and the gamma distribution. For the resulting distributions of first-arrival times, we derive analytical and sampling-based solutions, and implement the models in a Bayesian framework. Recovery studies and an application to a data set comprised of 1469 participants suggest that (1) both mixture distributions yield similar results; (2) all model parameters can be recovered accurately except for the drift variance parameter; (3) despite poor recovery, the presence of the drift variance parameter facilitates accurate recovery of the remaining parameters; (4) shift, threshold, and drift mean parameters are correlated.
引用
收藏
页码:1060 / 1076
页数:17
相关论文
共 50 条
  • [1] Modeling across-trial variability in the Wald drift rate parameter
    Helen Steingroever
    Dominik Wabersich
    Eric-Jan Wagenmakers
    [J]. Behavior Research Methods, 2021, 53 : 1060 - 1076
  • [2] Modeling mean estimation tasks in within-trial and across-trial contexts
    Ke Tong
    Chad Dubé
    [J]. Attention, Perception, & Psychophysics, 2022, 84 : 2384 - 2407
  • [3] Modeling mean estimation tasks in within-trial and across-trial contexts
    Tong, Ke
    Dube, Chad
    [J]. ATTENTION PERCEPTION & PSYCHOPHYSICS, 2022, 84 (07) : 2384 - 2407
  • [4] Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations
    Boehm, Udo
    Annis, Jeffrey
    Frank, Michael J.
    Hawkins, Guy E.
    Heathcote, Andrew
    Kellen, David
    Krypotos, Angelos-Miltiadis
    Lerche, Veronika
    Logan, Gordon D.
    Palmeri, Thomas J.
    van Ravenzwaaij, Don
    Servant, Mathieu
    Singmann, Henrik
    Starns, Jeffrey J.
    Voss, Andreas
    Wiecki, Thomas V.
    Matzke, Dora
    Wagenmakers, Eric-Jan
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2018, 87 : 46 - 75
  • [5] Across-trial spatial suppression in visual search
    Wang, Lishuang
    Wang, Benchi
    Theeuwes, Jan
    [J]. ATTENTION PERCEPTION & PSYCHOPHYSICS, 2021, 83 (07) : 2744 - 2752
  • [6] Across-trial spatial suppression in visual search
    Lishuang Wang
    Benchi Wang
    Jan Theeuwes
    [J]. Attention, Perception, & Psychophysics, 2021, 83 : 2744 - 2752
  • [7] Assessing within-trial and across-trial neural variability in macaque frontal eye fields and their relation to behaviour
    Sendhilnathan, Naveen
    Basu, Debaleena
    Murthy, Aditya
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2020, 52 (10) : 4267 - 4282
  • [8] Task switching and across-trial distance priming are independent
    Liefooghe, Baptist
    Verbruggen, Frederick
    Vandierendonck, Andre
    Fias, Wim
    Gevers, Wim
    [J]. EUROPEAN JOURNAL OF COGNITIVE PSYCHOLOGY, 2007, 19 (01): : 1 - 16
  • [9] Statistical Learning of Across-Trial Regularities During Serial Search
    Li, Ai-Su
    Bogaerts, Louisa
    Theeuwes, Jan
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 2022, 48 (03) : 262 - 274
  • [10] Across-Trial Dynamics of Stimulus Priors in an Auditory Discrimination Task
    Hermoso-Mendizabal, Ainhoa
    Hyafil, Alexandre
    Ernesto Rueda-Orozco, Pavel
    Jaramillo, Santiago
    Robbe, David
    de la Rocha, Jaime
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I, 2016, 9886 : 539 - 539