A Centrality Measure for Influence Maximization Across Multiple Social Networks

被引:5
|
作者
Singh, Shashank Sheshar [1 ]
Kumar, Ajay [1 ]
Mishra, Shivansh [1 ]
Singh, Kuldeep [1 ]
Biswas, Bhaskar [1 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi 221005, Uttar Pradesh, India
关键词
Information diffusion; Influence maximization; Social influence; Social networks; AWARE INFLUENCE MAXIMIZATION;
D O I
10.1007/978-981-15-0111-1_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Influence maximization (IM) is the problem of sub set selection which selects a subset of k users from the network to maximize the aggregate influence spread in the network. The paper addresses IM problem across multiple social networks simultaneously. We propose a new centrality measure to identify the most influential users and adopt the independent cascade model for information dissemination. The experiment results show the advantage of the proposed framework over classical influence maximization frameworks. The results also show the superiority of the proposed centrality measure over the state-of-the-art centrality measures.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [1] A New Centrality Measure for Influence Maximization in Social Networks
    Kundu, Suman
    Murthy, C. A.
    Pal, S. K.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, 2011, 6744 : 242 - 247
  • [2] Least Cost Influence Maximization Across Multiple Social Networks
    Zhang, Huiyuan
    Nguyen, Dung T.
    Zhang, Huiling
    Thai, My T.
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (02) : 929 - 939
  • [3] MIM2: Multiple influence maximization across multiple social networks
    Singh, Shashank Sheshar
    Singh, Kuldeep
    Kumar, Ajay
    Biswas, Bhaskar
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [4] Influence Maximization in Multiple Online Social Networks
    Nguyen, Dung T.
    Das, Soham
    Thai, My T.
    [J]. 2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 3060 - 3065
  • [5] Influence Maximization Across Partially Aligned Heterogenous Social Networks
    Zhan, Qianyi
    Zhang, Jiawei
    Wang, Senzhang
    Yu, Philip S.
    Xie, Junyuan
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 58 - 69
  • [6] Centrality Measures, Upper Bound, and Influence Maximization in Large Scale Directed Social Networks
    Pal, Sankar K.
    Kundu, Suman
    Murthy, C. A.
    [J]. FUNDAMENTA INFORMATICAE, 2014, 130 (03) : 317 - 342
  • [7] Influence maximization in community-structured social networks: a centrality-based approach
    Ganguly, Maitreyee
    Dey, Paramita
    Roy, Sarbani
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 19898 - 19941
  • [8] Least Cost Influence Maximization Across Multiple Social Networks (vol 24, pg 929, 2016)
    Zhang, Huiyuan
    Nguyen, Dung T.
    Das, Soham
    Zhang, Huiling
    Thai, My T.
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) : 3232 - 3232
  • [9] A novel measure of edge centrality in social networks
    De Meo, Pasquale
    Ferrara, Emilio
    Fiumara, Giacomo
    Ricciardello, Angela
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 30 : 136 - 150
  • [10] Social Networks: Prestige, Centrality, and Influence
    Rusinowska, Agnieszka
    Berghammer, Rudolf
    De Swart, Harrie
    Grabisch, Michel
    [J]. RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2011, 6663 : 22 - 39