Bandgap Engineering of Strained Monolayer and Bilayer MoS2

被引:2005
|
作者
Conley, Hiram J. [1 ]
Wang, Bin [1 ]
Ziegler, Jed I. [1 ]
Haglund, Richard F., Jr. [1 ]
Pantelides, Sokrates T. [1 ,2 ]
Bolotin, Kirill I. [1 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
MoS2; strain; bandgap engineering; photoluminescence; Gruneisen parameter; VALLEY POLARIZATION; ELECTRICAL CONTROL;
D O I
10.1021/nl4014748
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the influence of uniaxial tensile mechanical strain in the range 0-2.2% on the phonon spectra and bandstructures of monolayer and bilayer molybdenum disulfide (MoS2) two-dimensional crystals. First, we employ Raman spectroscopy to observe phonon softening with increased strain, breaking the degeneracy in the E' Raman mode of MoS2, and extract a Gruneisen parameter of similar to 1.06. Second, using photoluminescence spectroscopy we measure a decrease in the optical band gap of MoS2 that is approximately linear with strain, similar to 45 meV/% strain for monolayer MoS2 and similar to 120 meV/% strain for bilayer MoS2. Third, we observe a pronounced strain-induced decrease in the photoluminescence intensity of monolayer MoS2 that is indicative of the direct-to-indirect transition of the character of the optical band gap of this material at applied strain of similar to 1%. These observations constitute a demonstration of strain engineering the band structure in the emergent class of two-dimensional crystals, transition-metal dichalcogenides.
引用
收藏
页码:3626 / 3630
页数:5
相关论文
共 50 条
  • [1] Phonon bandgap engineering of strained monolayer MoS2
    Jiang, Jin-Wu
    [J]. NANOSCALE, 2014, 6 (14) : 8326 - 8333
  • [2] Bandgap engineering of monolayer MoS2 under strain: A DFT study
    Can Li
    Bowen Fan
    Weiyi Li
    Luowei Wen
    Yan Liu
    Tao Wang
    Kuang Sheng
    You Yin
    [J]. Journal of the Korean Physical Society, 2015, 66 : 1789 - 1793
  • [3] Bandgap engineering of monolayer MoS2 under strain: A DFT study
    Li, Can
    Fan, Bowen
    Li, Weiyi
    Wen, Luowei
    Liu, Yan
    Wang, Tao
    Sheng, Kuang
    Yin, You
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (11) : 1789 - 1793
  • [4] Bandgap recovery of monolayer MoS2 using defect engineering and chemical doping
    Aryeetey, Frederick
    Pourianejad, Sajedeh
    Ayanbajo, Olubukola
    Nowlin, Kyle
    Ignatova, Tetyana
    Aravamudhan, Shyam
    [J]. RSC ADVANCES, 2021, 11 (34) : 20893 - 20898
  • [5] Bandgap engineering of rippled MoS2 monolayer under external electric field
    Qi, Jingshan
    Li, Xiao
    Qian, Xiaofeng
    Feng, Ji
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (17)
  • [6] Shear strain bandgap tuning of monolayer MoS2
    Choudhary, Meenakshi
    Shital, Shilpi
    Ya'akobovitz, Assaf
    Niv, Avi
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (22)
  • [7] Performance Analysis of Strained Monolayer MoS2 MOSFET
    Sengupta, Amretashis
    Ghosh, Ram Krishna
    Mahapatra, Santanu
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (09) : 2782 - 2787
  • [8] Monolayer MoS2 Strained to 1.3% With a Microelectromechanical System
    Christopher, Jason W.
    Vutukuru, Mounika
    Lloyd, David
    Bunch, J. Scott
    Goldberg, Bennett B.
    Bishop, David J.
    Swan, Anna K.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2019, 28 (02) : 254 - 263
  • [9] Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors
    Ryou, Junga
    Kim, Yong-Sung
    Santosh, K. C.
    Cho, Kyeongjae
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors
    Junga Ryou
    Yong-Sung Kim
    Santosh KC
    Kyeongjae Cho
    [J]. Scientific Reports, 6