Knowledge Base Learning of Linguistic Fuzzy Rule-Based Systems in a Multi-objective Evolutionary Framework

被引:0
|
作者
Ducange, P. [1 ]
Alcala, R. [2 ]
Herrera, F. [2 ]
Lazzerini, B. [1 ]
Marcelloni, F. [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz Elettron Informat Tele, I-56122 Pisa, Italy
[2] Univ Granada, Dept Comp Sci, Granada 18071, Spain
来源
关键词
Multi-objective learning; accuracy-interpretability trade-off;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a multi-objective evolutionary algorithm to generate a set of fuzzy rule-based systems with different trade-offs between accuracy and complexity. The novelty of our approach resides in performing concurrently learning of rules and learning of the membership functions which define the meanings of the labels used in the rules. To this aim, we represent membership functions by the linguistic 2-tuple scheme, which allows the symbolic translation of a label by considering only one parameter, and adopt an appropriate two-variable chromosome coding. Results achieved by using a modified version of PAES on a real problem confirm the effectiveness of our approach in increasing the accuracy and decreasing the complexity of the solutions in the approximated Pareto front with respect to the single objective-based approach.
引用
收藏
页码:747 / +
页数:2
相关论文
共 50 条
  • [1] Multi-objective evolutionary design of fuzzy rule-based systems
    Ishibuchi, H
    Yamamoto, T
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 2362 - 2367
  • [2] A multi-objective evolutionary algorithm for rule selection and tuning on fuzzy rule-based systems
    Alcala, Rafael
    Alcala-Fdez, Jesus
    Gacto, Maria Jose
    Herrera, Francisco
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1372 - 1377
  • [3] A comparison of Multi-Objective Evolutionary Algorithms in fuzzy rule-based systems generation
    Cococcioni, M.
    Ducange, P.
    Lazzerini, B.
    Marcelloni, F.
    [J]. NAFIPS 2006 - 2006 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2, 2006, : 463 - +
  • [4] Exploiting a New Interpretability Index in the Multi-Objective Evolutionary Learning of Mamdani Fuzzy Rule-based Systems
    Antonelli, Michela
    Ducange, Pietro
    Lazzerini, Beatrice
    Marcelloni, Francesco
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 115 - 120
  • [5] A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers
    Antonelli, Michela
    Ducange, Pietro
    Marcelloni, Francesco
    [J]. INFORMATION SCIENCES, 2014, 283 : 36 - 54
  • [6] Multi-objective Evolutionary Rule and Condition Selection for Designing Fuzzy Rule-based Classifiers
    Antonelli, Michela
    Ducange, Pietro
    Marcelloni, Francesco
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [7] A Multi-objective Evolutionary Algorithm for Tuning Fuzzy Rule-Based Systems with Measures for Preserving Interpretability
    Gacto, M. J.
    Alcala, R.
    Herrera, F.
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1146 - 1151
  • [8] Interpretability Issues in Evolutionary Multi-Objective Fuzzy Knowledge Base Systems
    Shukla, Praveen Kumar
    Tripathi, Surya Prakash
    [J]. PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 1, 2013, 201 : 473 - +
  • [9] Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    María José Gacto
    Rafael Alcalá
    Francisco Herrera
    [J]. Soft Computing, 2009, 13 : 419 - 436
  • [10] Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    Gacto, Maria Jose
    Alcala, Rafael
    Herrera, Francisco
    [J]. SOFT COMPUTING, 2009, 13 (05) : 419 - 436