The approximation properties of some rational cubic splines

被引:51
|
作者
Duan, Q
Djidjeli, K
Price, WG
Twizell, EH [1 ]
机构
[1] Brunel Univ, Dept Math & Stat, Uxbridge UB8 3PH, Middx, England
[2] Shandong Univ Technol, Dept Math & Phys, Jinan 250061, Peoples R China
[3] Univ Southampton, Dept Ship Sci, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金;
关键词
rational spline; cubic spline; approximation property; optimal error constant;
D O I
10.1080/00207169908804842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the approximation properties of some typical rational cubic splines, including the case with cubic, quadratic or linear denominator. From the point of view of the magnitude of the optimal error constant, it is found that the rational cubic spline with linear denominator gives the best approximation to the function being interpolated.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 50 条
  • [1] The approximation properties of some rational cubic splines
    Duan, Qi
    Djidjeli, K.
    Price, W.G.
    Twizell, E.H.
    [J]. International Journal of Computer Mathematics, 1999, 72 (2-4): : 155 - 166
  • [2] The local integro cubic splines and their approximation properties
    Zhanlav, T.
    Mijiddorj, R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2215 - 2219
  • [3] On some properties of generalized cubic splines
    Zlotnik, AA
    Kireeva, OI
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2000, 15 (06) : 539 - 551
  • [4] The approximation properties of a rational cubic spline
    Tian, Meng
    Geng, Hongling
    [J]. ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 166 - 169
  • [5] Approximation by integro cubic splines
    Behforooz, Hossein
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 8 - 15
  • [6] SOME PROPERTIES OF CUBIC HERMITIAN SPLINES WITH ADDITIONAL NODES
    KVASOV, BI
    KOBKOV, VV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1974, 217 (05): : 1007 - 1010
  • [7] Shape preserving α-fractal rational cubic splines
    Balasubramani, N.
    Prasad, M. Guru Prem
    Natesan, S.
    [J]. CALCOLO, 2020, 57 (03)
  • [8] INTERPOLATION AND APPROXIMATION BY MONOTONE CUBIC-SPLINES
    ANDERSSON, LE
    ELFVING, T
    [J]. JOURNAL OF APPROXIMATION THEORY, 1991, 66 (03) : 302 - 333
  • [9] Arrival rate approximation by nonnegative cubic splines
    Alizadeh, Farid
    Eckstein, Jonathan
    Noyan, Nilay
    Rudolf, Gabor
    [J]. OPERATIONS RESEARCH, 2008, 56 (01) : 140 - 156