A Review of Error Estimation in Adaptive Quadrature

被引:31
|
作者
Gonnet, Pedro [1 ,2 ]
机构
[1] ETH, Zurich, Switzerland
[2] Univ Oxford, Oxford OX1 2JD, England
关键词
Algorithms; Reliability; Numerical integration; adaptive quadrature; error estimation; DEFINITE INTEGRALS; ALGORITHM; ROUTINES; SYSTEMS;
D O I
10.1145/2333112.2333117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The most critical component of any adaptive numerical quadrature routine is the estimation of the integration error. Since the publication of the first algorithms in the 1960s, many error estimation schemes have been presented, evaluated, and discussed. This article presents a review of existing error estimation techniques and discusses their differences and their common features. Some common shortcomings of these algorithms are discussed, and a new general error estimation technique is presented.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] PRACTICAL ERROR ESTIMATION IN ADAPTIVE MULTIDIMENSIONAL QUADRATURE ROUTINES
    BERNTSEN, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (03) : 327 - 340
  • [2] An adaptive angular quadrature for the discrete transfer method based on error estimation
    Versteeg, HK
    Henson, JC
    Malalasekera, W
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 301 - 311
  • [3] ERROR ESTIMATION IN AUTOMATIC QUADRATURE ROUTINES
    BERNTSEN, J
    ESPELID, TO
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (02): : 233 - 252
  • [4] SHARPER ERROR-ESTIMATES IN ADAPTIVE QUADRATURE
    LAURIE, DP
    BIT, 1983, 23 (02): : 258 - 261
  • [5] A DISCUSSION OF A NEW ERROR ESTIMATE FOR ADAPTIVE QUADRATURE
    ESPELID, TO
    SOREVIK, T
    BIT, 1989, 29 (02): : 283 - 294
  • [6] Quadrature Error Estimation for MoM Matrix Entries
    Botha, M. M.
    Rylander, T.
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 973 - 975
  • [7] Error estimation for quadrature by expansion in layer potential evaluation
    Ludvig af Klinteberg
    Anna-Karin Tornberg
    Advances in Computational Mathematics, 2017, 43 : 195 - 234
  • [8] ERROR ESTIMATION IN CLENSHAW-CURTIS QUADRATURE FORMULA
    OHARA, H
    SMITH, FJ
    COMPUTER JOURNAL, 1968, 11 (02): : 213 - &
  • [9] Error estimation for quadrature by expansion in layer potential evaluation
    af Klinteberg, Ludvig
    Tornberg, Anna-Karin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (01) : 195 - 234
  • [10] Parallel adaptive Bayesian quadrature for rare event estimation
    Dang, Chao
    Wei, Pengfei
    Faes, Matthias G. R.
    Valdebenito, Marcos A.
    Beer, Michael
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225