Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

被引:51
|
作者
Gallis, M. A. [1 ]
Koehler, T. P. [1 ]
Torczynski, J. R. [1 ]
Plimpton, S. J. [2 ]
机构
[1] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Comp Res Ctr, Albuquerque, NM 87185 USA
关键词
GROWTH;
D O I
10.1063/1.4928338
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. Consistent with previous work in this field, the DSMC simulations indicate that RMI growth follows a universal behavior. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244
  • [2] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun
    State Key Laboratory of Scientific and Engineering Computing
    Science China Mathematics, 2004, (S1) : 234 - 244
  • [3] Numerical simulation of Richtmyer-Meshkov instability
    Fu, DX
    Ma, YW
    Zhang, LB
    Tian, BL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (Suppl 1): : 234 - 244
  • [4] Numerical simulation of Richtmyer-Meshkov instability
    Dexun Fu
    Yanwen Ma
    Linbo Zhang
    Baolin Tian
    Science in China Series A: Mathematics, 2004, 47 : 234 - 244
  • [5] Direct numerical simulation of the multimode narrowband Richtmyer-Meshkov instability
    Groom, M.
    Thornber, B.
    COMPUTERS & FLUIDS, 2019, 194
  • [6] The Richtmyer-Meshkov instability
    Brouillette, M
    ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 : 445 - 468
  • [7] Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces
    Mariani, Christian
    Vandenboomgaerde, Marc
    Jourdan, Georges
    Souffland, Denis
    Houas, Lazhar
    PHYSICAL REVIEW LETTERS, 2008, 100 (25)
  • [8] Numerical investigation of magnetic Richtmyer-Meshkov instability
    Levy, Y.
    Jaouen, S.
    Canaud, B.
    LASER AND PARTICLE BEAMS, 2012, 30 (03) : 415 - 419
  • [9] Direct numerical simulation of three-dimensional Richtmyer-Meshkov instability
    Fu De-Xun
    Ma Yan-Wen
    Li Xin-Liang
    CHINESE PHYSICS LETTERS, 2008, 25 (01) : 188 - 190
  • [10] Direct Numerical Simulation of the Richtmyer-Meshkov Instability in Reactive and Nonreactive Flows
    Bambauer, Maximilian
    Hasslberger, Josef
    Klein, Markus
    COMBUSTION SCIENCE AND TECHNOLOGY, 2020, 192 (11) : 2010 - 2027