Revealing the quantum regime in tunnelling plasmonics

被引:832
|
作者
Savage, Kevin J. [1 ]
Hawkeye, Matthew M. [1 ]
Esteban, Ruben [2 ,3 ]
Borisov, Andrei G. [2 ,3 ,4 ]
Aizpurua, Javier [2 ,3 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Nanophoton Ctr, Cambridge CB3 0HE, England
[2] Mat Phys Ctr CSIC UPV EHU, Donostia San Sebastian 20018, Spain
[3] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[4] Univ Paris 11, CNRS, UMR 8214, Inst Sci Mol Orsay, F-91405 Orsay, France
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
METALLIC NANOPARTICLES; OPTICAL RECTIFICATION; FIELD ENHANCEMENT; LIGHT-EMISSION; MICROSCOPE; DIMERS; MODEL; PAIRS;
D O I
10.1038/nature11653
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors(1), nanoscale control of active devices(2-4), and improved photovoltaic devices(5). But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments(6-14) fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems(15), which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8) lambda(3) for visible light (of wavelength lambda). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.
引用
收藏
页码:574 / 577
页数:4
相关论文
共 50 条
  • [1] Revealing the quantum regime in tunnelling plasmonics
    Kevin J. Savage
    Matthew M. Hawkeye
    Rubén Esteban
    Andrei G. Borisov
    Javier Aizpurua
    Jeremy J. Baumberg
    [J]. Nature, 2012, 491 : 574 - 577
  • [2] Quantum effects in tunnelling plasmonics
    Aizpurua, J.
    Esteban, R.
    Nordlander, P.
    Borisov, A.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [3] Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime
    Kim, Joon-Yeon
    Kang, Bong Joo
    Park, Joohyun
    Bahk, Young-Mi
    Kim, Won Tae
    Rhie, Jiyeah
    Jeon, Hyeongtag
    Rotermund, Fabian
    Kim, Dai-Sik
    [J]. NANO LETTERS, 2015, 15 (10) : 6683 - 6688
  • [4] Quantum regime of resonant-tunnelling diode oscillations
    Elant'ev, I. A. .
    Bezotosny, I. U.
    Bezhko, M. P.
    Elesin, V. F.
    [J]. IV NANOTECHNOLOGY INTERNATIONAL FORUM (RUSNANOTECH 2011), 2012, 345
  • [5] Coherent tunnelling across a quantum point contact in the quantum Hall regime
    Martins, F.
    Faniel, S.
    Rosenow, B.
    Sellier, H.
    Huant, S.
    Pala, M. G.
    Desplanque, L.
    Wallart, X.
    Bayot, V.
    Hackens, B.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [6] Coherent tunnelling across a quantum point contact in the quantum Hall regime
    F. Martins
    S. Faniel
    B. Rosenow
    H. Sellier
    S. Huant
    M. G. Pala
    L. Desplanque
    X. Wallart
    V. Bayot
    B. Hackens
    [J]. Scientific Reports, 3
  • [7] THERMAL-ACTIVATION IN THE QUANTUM REGIME AND MACROSCOPIC TUNNELLING IN THE THERMAL REGIME IN A METABISTABLE SYSTEM CONSISTING OF A SUPERCONDUCTING RING INTERRUPTED BY A WEAK JUNCTION .3. MACROSCOPIC QUANTUM TUNNELLING IN THE THERMAL REGIME
    BOL, DW
    OUBOTER, RD
    [J]. PHYSICA B-CONDENSED MATTER, 1989, 160 (01) : 56 - 82
  • [8] Quantum plasmonics
    Fyodorov, Ilya
    Sarychev, Andrey K.
    Tartakovsky, Gennady
    [J]. METAMATERIALS: FUNDAMENTALS AND APPLICATIONS VI, 2013, 8806
  • [9] Quantum plasmonics
    Tame M.S.
    McEnery K.R.
    Özdemir Ş.K.
    Lee J.
    Maier S.A.
    Kim M.S.
    [J]. Nature Physics, 1600, Nature Publishing Group (09): : 329 - 340
  • [10] Quantum plasmonics
    Jacob, Zubin
    [J]. MRS BULLETIN, 2012, 37 (08) : 761 - 767