Heterogeneous feature subset selection using mutual information-based feature transformation

被引:27
|
作者
Wei, Min [1 ]
Chow, Tommy W. S. [1 ]
Chan, Rosa H. M. [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Feature subset selection; Feature transformation; Mutual information; Heterogeneous features; DIMENSIONALITY REDUCTION; CLASSIFICATION; ALGORITHM; HISTOGRAM; SEARCH;
D O I
10.1016/j.neucom.2015.05.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional mutual information (MI) based feature selection (FS) methods are unable to handle heterogeneous feature subset selection properly because of data format differences or estimation methods of MI between feature subset and class label. A way to solve this problem is feature transformation (FT). In this study, a novel unsupervised feature transformation (UFT) which can transform non-numerical features into numerical features is developed and tested. The UFT process is MI-based and independent of class label. MI-based FS algorithms, such as Parzen window feature selector (PWFS), minimum redundancy maximum relevance feature selection (mRMR), and normalized MI feature selection (NMIFS), can all adopt UFT for pre-processing of non-numerical features. Unlike traditional FT methods, the proposed UFT is unbiased while PWFS is utilized to its full advantage. Simulations and analyses of large-scale datasets showed that feature subset selected by the integrated method, UFT-PWFS, outperformed other FT-FS integrated methods in classification accuracy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:706 / 718
页数:13
相关论文
共 50 条
  • [1] Mutual information-based feature selection for radiomics
    Oubel, Estanislao
    Beaumont, Hubert
    Iannessi, Antoine
    [J]. MEDICAL IMAGING 2016: PACS AND IMAGING INFORMATICS: NEXT GENERATION AND INNOVATIONS, 2016, 9789
  • [2] Feature redundancy term variation for mutual information-based feature selection
    Wanfu Gao
    Liang Hu
    Ping Zhang
    [J]. Applied Intelligence, 2020, 50 : 1272 - 1288
  • [3] Feature redundancy term variation for mutual information-based feature selection
    Gao, Wanfu
    Hu, Liang
    Zhang, Ping
    [J]. APPLIED INTELLIGENCE, 2020, 50 (04) : 1272 - 1288
  • [4] Mutual information-based feature selection for multilabel classification
    Doquire, Gauthier
    Verleysen, Michel
    [J]. NEUROCOMPUTING, 2013, 122 : 148 - 155
  • [5] Stopping rules for mutual information-based feature selection
    Mielniczuk, Jan
    Teisseyre, Pawel
    [J]. NEUROCOMPUTING, 2019, 358 : 255 - 274
  • [6] A Study on Mutual Information-Based Feature Selection in Classifiers
    Arundhathi, B.
    Athira, A.
    Rajan, Ranjidha
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2016, 2017, 517 : 479 - 486
  • [7] CONDITIONAL DYNAMIC MUTUAL INFORMATION-BASED FEATURE SELECTION
    Liu, Huawen
    Mo, Yuchang
    Zhao, Jianmin
    [J]. COMPUTING AND INFORMATICS, 2012, 31 (06) : 1193 - 1216
  • [8] Study on mutual information-based feature selection for text categorization
    Xu, Yan
    Jones, Gareth
    Li, Jintao
    Wang, Bin
    Sun, Chunming
    [J]. Journal of Computational Information Systems, 2007, 3 (03): : 1007 - 1012
  • [9] Mutual information-based feature selection for intrusion detection systems
    Amiri, Fatemeh
    Yousefi, MohammadMahdi Rezaei
    Lucas, Caro
    Shakery, Azadeh
    Yazdani, Nasser
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2011, 34 (04) : 1184 - 1199
  • [10] A Fuzzy Mutual Information-based Feature Selection Method for Classification
    Hogue, N.
    Ahmed, H. A.
    Bhattacharyya, D. K.
    Kalita, J. K.
    [J]. FUZZY INFORMATION AND ENGINEERING, 2016, 8 (03) : 355 - 384