Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits

被引:193
|
作者
Lu, Yegang [1 ]
Stegmaier, Matthias [4 ]
Nukala, Pavan [3 ]
Giambra, Marco A. [2 ,5 ]
Ferrari, Simone [4 ]
Busacca, Alessandro [5 ]
Pernice, Wolfram H. P. [4 ]
Agarwal, Ritesh [3 ]
机构
[1] Ningbo Univ, Key Lab Photoelect Mat & Devices Zhejiang Prov, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
[2] Karlsruhe Inst Technol, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Univ Munster, Inst Phys, D-48149 Munster, Germany
[5] Univ Palermo, I-90133 Palermo, Italy
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
All-optical switching; GeTe nanowires; nanophotonic circuits; phase change; NONVOLATILE; POWER;
D O I
10.1021/acs.nanolett.6b03688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory 1 applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
引用
收藏
页码:150 / 155
页数:6
相关论文
共 50 条
  • [1] Phase-Change Nanophotonic Circuits With Crossbar Electrodes and Integrated Microheaters
    Lian, Xiaojuan
    Jiang, Jiyuan
    Fu, Jinke
    Wan, Xiang
    Liu, Xiaoyan
    Cai, Zhikuang
    Wang, Lei
    [J]. IEEE ELECTRON DEVICE LETTERS, 2022, 43 (12) : 2192 - 2195
  • [2] Electrically Programmable Phase-Change Nanophotonic Circuits Designed for Edge Detection Application
    Lian, Xiaojuan
    Jiang, Jiyuan
    Tao, Zeheng
    Cui, Guohao
    Huang, Wen
    Cai, Zhikuang
    Wang, Lei
    [J]. IEEE ELECTRON DEVICE LETTERS, 2024, 45 (07) : 1101 - 1104
  • [3] Mixed-mode biquad circuits
    Soliman, AM
    [J]. MICROELECTRONICS JOURNAL, 1996, 27 (06) : 591 - 594
  • [4] Mixed-mode biquad circuits
    Cairo Univ, Giza, Egypt
    [J]. Microelectron J, 6 (591-594):
  • [5] NEW CONSTRUCTION OF MIXED-MODE CHAOTIC CIRCUITS
    Klomkarn, Kitdakorn
    Sooraksa, Pitikhate
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1485 - 1497
  • [6] Properties of memristive circuits with mixed-mode oscillations
    Marszalek, W.
    Trzaska, Z. W.
    [J]. ELECTRONICS LETTERS, 2015, 51 (02) : 140 - 141
  • [7] Substrate coupling in mixed-mode and RF integrated circuits
    Verghese, NK
    Allstot, DJ
    [J]. TENTH ANNUAL IEEE INTERNATIONAL ASIC CONFERENCE AND EXHIBIT, PROCEEDINGS, 1997, : 297 - 303
  • [8] Mixed-mode parameter analysis of fully differential circuits
    Rahkonen, T
    Kortekangas, J
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 269 - 272
  • [9] On the design of mixed-mode simulators for modern VLSI circuits
    Abdallah, N
    Sabet, PB
    Greiner, A
    [J]. 38TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 1168 - 1171
  • [10] The mechanism of mixed-mode phase transformations
    Pond, RC
    Shang, P
    Cheng, TT
    Aindow, M
    [J]. INTERFACIAL ENGINEERING FOR OPTIMIZED PROPERTIES II, 2000, 586 : 21 - 26