Improved robust Bayes estimators of the error variance in linear models

被引:0
|
作者
Maruyama, Yuzo [1 ]
Strawderman, William E. [2 ]
机构
[1] Univ Tokyo, Tokyo 1138654, Japan
[2] Rutgers State Univ, Piscataway, NJ 08855 USA
关键词
Estimation of variance; Harmonic prior; Robustness;
D O I
10.1016/j.jspi.2013.01.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the error variance in a general linear model when the error distribution is assumed to be spherically symmetric, but not necessary Gaussian. In particular we study the case of a scale mixture of Gaussians including the particularly important case of the multivariate-t distribution. Under Stein's loss, we construct a class of estimators that improve on the usual best unbiased (and best equivariant) estimator. Our class has the interesting double robustness property of being simultaneously generalized Bayes (for the same generalized prior) and minimax over the entire class of scale mixture of Gaussian distributions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1091 / 1097
页数:7
相关论文
共 50 条