Random walk or chaos: A formal test on the Lyapunov exponent

被引:9
|
作者
Park, Joon Y. [1 ,2 ]
Whang, Yoon-Jae [3 ]
机构
[1] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
[2] Sungkyunkwan Univ, Bloomington, IN 47405 USA
[3] Seoul Natl Univ, Dept Econ, Seoul 151746, South Korea
关键词
Lyapunov exponent; Chaos; Random walk; Unit root; Kernel regression; Brownian motion; Local time; Stochastic integrals; DETERMINISTIC SYSTEMS; TIME-SERIES; UNIT-ROOT; DYNAMICS;
D O I
10.1016/j.jeconom.2012.01.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
A formal test on the Lyapunov exponent is developed to distinguish a random walk model from a chaotic system, which is based on the Nadaraya-Watson kernel estimator of the Lyapunov exponent. The asymptotic null distribution of our test statistic is free of nuisance parameter, and simply given by the range of standard Brownian motion on the unit interval. The test is consistent against the chaotic alternatives. A simulation study shows that the test performs reasonably well in finite samples. We apply our test to some of the standard macro and financial time series, finding no significant empirical evidence of chaos. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [1] A shape theorem and a variational formula for the quenched Lyapunov exponent of random walk in a random potential
    Janjigian, Christopher
    Nurbavliyev, Sergazy
    Rassoul-Agha, Firas
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 1010 - 1040
  • [2] Positive Lyapunov exponent by a random perturbation
    Lian, Zeng
    Stenlund, Mikko
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (02): : 239 - 252
  • [3] The disconnection exponent for simple random walk
    Gregory F. Lawler
    Emily E. Puckette
    [J]. Israel Journal of Mathematics, 1997, 99 : 109 - 121
  • [4] The intersection exponent for simple random walk
    Lawler, GF
    Puckette, EE
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (05): : 441 - 464
  • [5] The disconnection exponent for simple random walk
    Lawler, GF
    Puckette, EE
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1997, 99 (1) : 109 - 121
  • [6] ESTIMATION OF A LYAPUNOV-EXPONENT SPECTRUM OF PLASMA CHAOS
    HUANG, W
    DING, WX
    FENG, DL
    YU, CX
    [J]. PHYSICAL REVIEW E, 1994, 50 (02): : 1062 - 1069
  • [7] Lyapunov exponent for type-III intermittent chaos
    Cosenza, M. G.
    Alvarez-Llamoza, O.
    Ponce, G. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (09) : 2431 - 2435
  • [8] Statistics of Lyapunov exponent in random Fibonacci multilayer
    Falcone, Pasquale
    Moretti, Luigi
    [J]. JOURNAL OF OPTICS, 2024, 26 (09)
  • [9] Lyapunov exponent for pure and random Fibonacci chains
    Velhinho, MT
    Pimentel, IR
    [J]. PHYSICAL REVIEW B, 2000, 61 (02) : 1043 - 1050
  • [10] A RANDOM COCYCLE WITH NON HOLDER LYAPUNOV EXPONENT
    Duarte, Pedro
    Klein, Silvius
    Santos, Manuel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) : 4841 - 4861