Alternating Direction Method for a Class of Sylvester Matrix Equations with Linear Matrix Inequality Constraint

被引:5
|
作者
Ke, Yifen [1 ,2 ,3 ]
Ma, Changfeng [2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Computat Geodynam, Beijing, Peoples R China
[2] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[3] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
基金
中国博士后科学基金;
关键词
Alternating direction method; convergence analysis; linear matrix inequality constraint; numerical experiment; Sylvester matrix equations; COMMON SOLUTION; AX; PAIR; A2XB2=C2; A1XB1=C1; XB; XC;
D O I
10.1080/01630563.2017.1349795
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces an alternating direction method of multi pliers (ADMM) for finding solutions to a class of Sylvester matrix equation AXB = E subject to a linear matrix inequality constraint CXD >= G. Preliminary convergence properties of ADMM are presented. Numerical experiments are performed to illustrate the feasibility and effectiveness of ADMM. In addition, some numerical comparisons with a recent algorithm are also given.
引用
收藏
页码:257 / 275
页数:19
相关论文
共 50 条
  • [1] Constraint generalized Sylvester matrix equations
    Wang, Qing-Wen
    Rehman, Abdur
    He, Zhuo-Heng
    Zhang, Yang
    [J]. AUTOMATICA, 2016, 69 : 60 - 64
  • [2] The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint
    Huang, Baohua
    Ma, Changfeng
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (01) : 193 - 221
  • [3] The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint
    Baohua Huang
    Changfeng Ma
    [J]. Journal of Global Optimization, 2019, 73 : 193 - 221
  • [4] Alternating direction methods for solving a class of Sylvester-like matrix equations (AXB, CXD) = (G, H)
    Ke, Yi-Fen
    Ma, Chang-Feng
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (11): : 2268 - 2292
  • [5] Adaptive Parameter Alternating Direction Algorithm for Centrosymmetric Solutions of a Class of Generalized Coupled Sylvester-transpose Matrix Equations
    Yan, Tongxin
    Ke, Yifen
    Ma, Changfeng
    [J]. FRONTIERS OF MATHEMATICS, 2023, 18 (04): : 977 - 998
  • [6] Adaptive Parameter Alternating Direction Algorithm for Centrosymmetric Solutions of a Class of Generalized Coupled Sylvester-transpose Matrix Equations
    Tongxin Yan
    Yifen Ke
    Changfeng Ma
    [J]. Frontiers of Mathematics, 2023, 18 : 977 - 998
  • [7] ALTERNATING DIRECTION METHOD FOR A CLASS OF CONSTRAINED MATRIX APPROXIMATION PROBLEMS
    Li, Qingna
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (04): : 765 - 778
  • [8] A Constraint System of Generalized Sylvester Quaternion Matrix Equations
    Abdur Rehman
    Qing-Wen Wang
    Ilyas Ali
    Muhammad Akram
    M. O. Ahmad
    [J]. Advances in Applied Clifford Algebras, 2017, 27 : 3183 - 3196
  • [9] A Constraint System of Generalized Sylvester Quaternion Matrix Equations
    Rehman, Abdur
    Wang, Qing-Wen
    Ali, Ilyas
    Akram, Muhammad
    Ahmad, M. O.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (04) : 3183 - 3196
  • [10] Alternating direction method for generalized Sylvester matrix equation AXB plus CYD = E
    Ke, Yi-Fen
    Ma, Chang-Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 260 : 106 - 125