Parameter estimation in stochastic scenario generation systems

被引:15
|
作者
Mulvey, JM
Rosenbaum, DP
Shetty, B [1 ]
机构
[1] Princeton Univ, Dept Civil Engn & Operat Res, Princeton, NJ 08544 USA
[2] Texas A&M Univ, Dept Informat & Operat Management, College Stn, TX 77843 USA
关键词
scenarios; finance; tabu search;
D O I
10.1016/S0377-2217(98)90323-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Scenario analysis offers an effective tool for addressing the stochastic elements in multi-period financial planning models. Critical to any scenario generation process is the estimation of the input parameters of the underlying stochastic model for economic factors. In this paper, we propose a new approach for estimation, known as the integrated parameter estimation (IPE). This approach combines the significant features of other well-known estimation techniques within a non-convex multiple objective optimization framework, with the objective weights controlling the relative importance of the features. We solve the non-convex optimization problem using adaptive memory programming - a variation of tabu search. Based on a short interest rate model using UK treasury rates from 1980 to 1995, the integrated approach compares favorably with maximum likelihood and the generalized method of moments. We also evaluate performance with Towers Perrin's CAP:Link scenario generation system. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 50 条
  • [1] Multi-Scenario Parameter Estimation for Synchronous Generation Systems
    Zhu, Zexiang
    Geng, Guangchao
    Jiang, Quanyuan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (03) : 1851 - 1859
  • [2] Sequential parameter estimation for stochastic systems
    Kivman, GA
    NONLINEAR PROCESSES IN GEOPHYSICS, 2003, 10 (03) : 253 - 259
  • [3] PARAMETER ESTIMATION OF STOCHASTIC CHAOTIC SYSTEMS
    Maraia, Ramona
    Springer, Sebastian
    Haario, Heikki
    Hakkarainen, Janne
    Saksman, Eero
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (02) : 49 - 62
  • [4] On parameter estimation for linear and nonlinear stochastic systems
    Khasminskii, RZ
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 237 - 245
  • [5] Parameter estimation of stochastic linear systems with noisy input
    Zheng, WX
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2004, 35 (03) : 185 - 190
  • [6] Stochastic parameter estimation of non-linear systems
    Vasta, M
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 269 - 278
  • [7] Global parameter estimation methods for stochastic biochemical systems
    Suresh Kumar Poovathingal
    Rudiyanto Gunawan
    BMC Bioinformatics, 11
  • [8] A note on sampling and parameter estimation in linear stochastic systems
    Duncan, TE
    Mandl, P
    Pasik-Duncan, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2120 - 2125
  • [9] Global parameter estimation methods for stochastic biochemical systems
    Poovathingal, Suresh Kumar
    Gunawan, Rudiyanto
    BMC BIOINFORMATICS, 2010, 11
  • [10] Joint state and parameter robust estimation of stochastic nonlinear systems
    Stojanovic, Vladimir
    Nedic, Novak
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (14) : 3058 - 3074