On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients

被引:5
|
作者
Bucur, Alina [1 ]
Ernvall-Hytonen, Anne-Maria [2 ]
Odzak, Almasa [3 ]
Smajlovic, Lejla [3 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] Abo Akad Univ, Dept Math & Stat, Fanriksgatan 3, SF-20500 Turku, Finland
[3] Univ Sarajevo, Dept Math, Zmaja Bosne 35, Sarajevo 71000, Bosnia & Herceg
来源
关键词
D O I
10.1112/S1461157016000115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Li coefficients lambda(F)(n) of a zeta or L-function F provide an equivalent criterion for the (generalized) Riemann hypothesis. In this paper we define these coefficients, and their generalizations, the tau-Li coefficients, for a subclass of the extended Selberg class which is known to contain functions violating the Riemann hypothesis such as the Davenport-Heilbronn zeta function. The behavior of the tau-Li coefficients varies depending on whether the function in question has any zeros in the half-plane Re(z) > tau/2. We investigate analytically and numerically the behavior of these coefficients for such functions in both the n and tau aspects.
引用
收藏
页码:259 / 280
页数:22
相关论文
共 16 条
  • [1] ZERO-FREE REGIONS FOR DIRICHLET SERIES
    Delaunay, C.
    Fricain, E.
    Mosaki, E.
    Robert, O.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 3227 - 3253
  • [2] Zero-free regions for Dirichlet series (II)
    Delaunay, C.
    Fricain, E.
    Mosaki, E.
    Robert, O.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 999 - 1023
  • [3] Zero-free regions for Dirichlet series (II)
    C. Delaunay
    E. Fricain
    E. Mosaki
    O. Robert
    [J]. Mathematische Zeitschrift, 2013, 273 : 999 - 1023
  • [4] A Li-type criterion for zero-free half-planes of Riemann's zeta function
    Freitas, Pedro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 399 - 414
  • [5] On the asymptotic criterion for the zero-free regions of certain L-functions
    Odzak, Almasa
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 688 - 702
  • [6] Li's criterion and zero-free regions of L-functions
    Brown, FCS
    [J]. JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 1 - 32
  • [7] Zero-free regions for Dirichlet L-functions
    Li, HZ
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (197): : 13 - 23
  • [8] EXPLICIT ZERO-FREE REGIONS FOR DIRICHLET L-FUNCTIONS
    Kadiri, Habiba
    [J]. MATHEMATIKA, 2018, 64 (02) : 445 - 474
  • [10] Zero-Free Regions for Lacunary Type Polynomials
    Malik, S. Ahmad
    Kumar, A.
    Zargar, B. Ahmad
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (03): : 172 - 182