Bounds for quantities of interest and adaptivity in the element-free Galerkin method

被引:2
|
作者
Vidal, Yolanda [1 ]
Pares, Nuria [1 ]
Diez, Pedro [1 ]
Huerta, Antonio [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 3, Lab Calcul Numer, E-08034 Barcelona, Spain
关键词
element-free Galerkin; mesh-free; error estimation; engineering outputs; functional outputs; goal-oriented error estimation; residual-based estimators; adaptivity;
D O I
10.1002/nme.2380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel approach to implicit residual-type error estimation in mesh-free methods and an adaptive refinement strategy are presented. This allows computing upper and lower bounds of the error in energy norm with the ultimate goal of obtaining bounds for outputs of interest. The proposed approach precludes the main drawbacks of standard residual-type estimators circumventing the need of flux-equilibration and resulting in a simple implementation that avoids integrals on edges/sides of a domain decomposition (mesh). This is especially interesting for mesh-free methods. The adaptive strategy proposed leads to a fast convergence of the bounds to the desired precision. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1782 / 1818
页数:37
相关论文
共 50 条
  • [1] Recovery based error estimation and adaptivity applied to a modified element-free Galerkin method
    R. Rossi
    M. K. Alves
    [J]. Computational Mechanics, 2004, 33 : 194 - 205
  • [2] Recovery based error estimation and adaptivity applied to a modified element-free Galerkin method
    Rossi, R
    Alves, MK
    [J]. COMPUTATIONAL MECHANICS, 2004, 33 (03) : 194 - 205
  • [3] Consistent element-free Galerkin method
    Duan, Qinglin
    Gao, Xin
    Wang, Bingbing
    Li, Xikui
    Zhang, Hongwu
    Belytschko, Ted
    Shao, Yulong
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (02) : 79 - 101
  • [4] A coupled finite element - Element-free Galerkin method
    Belytschko, T
    Organ, D
    Krongauz, Y
    [J]. COMPUTATIONAL MECHANICS, 1995, 17 (03) : 186 - 195
  • [5] On boundary conditions in the element-free Galerkin method
    Y. X. Mukherjee
    S. Mukherjee
    [J]. Computational Mechanics, 1997, 19 : 264 - 270
  • [6] An element-free Galerkin method for the obstacle problem
    Li, Xiaolin
    Dong, Haiyun
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 112
  • [7] On error control in the element-free Galerkin method
    Zhuang, Xiaoying
    Heaney, Claire
    Augarde, Charles
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 351 - 360
  • [8] Nodal integration of the element-free Galerkin method
    Beissel, S
    Belytschko, T
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) : 49 - 74
  • [9] Bernstein polynomials in element-free Galerkin method
    Valencia, O. F.
    Gomez-Escalonilla, F. J.
    Garijo, D.
    Diez, J. L.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2011, 225 (C8) : 1808 - 1815
  • [10] On boundary conditions in the element-free Galerkin method
    Mukherjee, YX
    Mukherjee, S
    [J]. COMPUTATIONAL MECHANICS, 1997, 19 (04) : 264 - 270