Constraining dark matter in galactic substructure

被引:24
|
作者
Baxter, Eric J. [1 ]
Dodelson, Scott [1 ,2 ,3 ]
Koushiappas, Savvas M. [4 ]
Strigari, Louis E. [5 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[2] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA
[3] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[4] Brown Univ, Dept Phys, Providence, RI 02912 USA
[5] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 12期
基金
美国国家科学基金会;
关键词
GAMMA-RAY SOURCES; POWER SPECTRUM; ANNIHILATION; PROSPECTS; EXISTENCE; BLAZARS; GLAST;
D O I
10.1103/PhysRevD.82.123511
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detecting the dark matter annihilation signal from Galactic substructure, or subhalos, is an important challenge for high-energy gamma-ray experiments. In this paper we discuss detection prospects by combining two different aspects of the gamma-ray signal: the angular distribution and the photon counts probability distribution function (PDF). The true PDF from subhalos has been shown recently (by Lee et al.) to deviate from Poisson; we extend this analysis and derive the signal PDF from a detailed Delta CDM-based model for the properties of subhalos. We combine our PDF with a model for Galactic and extra-Galactic diffuse gamma-ray emission to obtain an estimator and projected error on dark matter particle properties (mass and annihilation cross section) using the Fermi gamma-ray space telescope. We compare the estimator obtained from the true PDF to that obtained from the simpler Poisson analysis. We find that, although both estimators are unbiased in the presence of backgrounds, the error on dark matter properties derived from the true PDF is similar to 50% smaller than when utilizing the Poisson-based analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dark matter substructure within galactic halos
    Moore, B
    Ghigna, S
    Governato, F
    Lake, G
    Quinn, T
    Stadel, J
    Tozzi, P
    [J]. ASTROPHYSICAL JOURNAL, 1999, 524 (01): : L19 - L22
  • [2] Dark Matter Substructure and Dwarf Galactic Satellites
    Kravtsov, Andrey
    [J]. ADVANCES IN ASTRONOMY, 2010, 2010
  • [3] Galactic substructure and direct detection of dark matter
    Kamionkowski, Marc
    Koushiappas, Savvas M.
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [4] Cold Dark Matter Substructure and Galactic Disks
    Kazantzidis, Stelios
    Zentner, Andrew R.
    Bullock, James S.
    [J]. GALAXY DISK IN COSMOLOGICAL CONTEXT, PROCEEDINGS OF THE 254TH SYMPOSIUM OF THE IAU, 2009, (254): : 417 - +
  • [5] Constraining galactic structures of mirror dark matter
    Roux, Jean-Samuel
    Cline, James M.
    [J]. PHYSICAL REVIEW D, 2020, 102 (06)
  • [6] Constraining dark matter substructure with Gaia wide binaries
    Ramirez, Edward D.
    Buckley, Matthew R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (04) : 5813 - 5830
  • [7] Cold dark matter substructure and the heating of galactic disks
    Font, AS
    Navarro, JF
    [J]. ASTROPHYSICAL SUPERCOMPUTING USING PARTICLE SIMULATIONS, 2003, (208): : 391 - 392
  • [8] Searches for Galactic Dark Matter Substructure with the Fermi LAT
    Drlica-Wagner, Alex
    [J]. SOURCES AND DETECTION OF DARK MATTER AND DARK ENERGY IN THE UNIVERSE, 2013, 148 : 73 - 76
  • [9] Constraining the primordial curvature perturbation using dark matter substructure
    Ando, Shin'ichiro
    Hiroshima, Nagisa
    Ishiwata, Koji
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [10] Constraining the substructure of dark matter haloes with galaxy-galaxy lensing
    Li, Ran
    Mo, H. J.
    Fan, Zuhui
    Yang, Xiaohu
    van den Bosch, Frank C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 430 (04) : 3359 - 3375