The Euler-Lagrange and Legendre equations for functionals involving distributed-order fractional derivatives

被引:12
|
作者
Almeida, Ricardo [1 ]
Luisa Morgado, M. [2 ,3 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
[2] Univ Tras Os Montes & Alto Douro, Pole CMAT UTAD, Ctr Math, Vila Real, Portugal
[3] Univ Tras Os Montes & Alto Douro, UTAD, Dept Math, Vila Real, Portugal
关键词
Distributed-order fractional derivative; Euler-Lagrange equation; Legendre condition; Numerical methods; DIFFUSION EQUATION; VARIATIONAL CALCULUS; BOUNDED DOMAINS; FORMULATION;
D O I
10.1016/j.amc.2018.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend some fractional calculus of variations results by considering functionals depending on distributed-order fractional derivatives. Using variational techniques, we deduce optimal necessary conditions of Euler-Lagrange and Legendre type. We also study the case where integral and holonomic constraints are imposed. Finally, a numerical procedure is given to solve some proposed problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [1] Variational problems with fractional derivatives: Euler-Lagrange equations
    Atanackovic, T. M.
    Konjik, S.
    Pilipovic, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
  • [2] Euler-Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    Zorica, Dusan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 256 - 275
  • [3] Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 385 - 391
  • [4] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [5] Fractional Euler-Lagrange equations of motion in fractional space
    Muslih, Sami I.
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1209 - 1216
  • [6] EULER-LAGRANGE EQUATIONS FOR FUNCTIONALS DEFINED ON FRECHET MANIFOLDS
    Antonio Vallejo, Jose
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (04) : 443 - 454
  • [7] Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel
    Coronel-Escamilla, Antonio
    Francisco Gomez-Aguilar, Jose
    Baleanu, Dumitru
    Fabricio Escobar-Jimenez, Ricardo
    Hugo Olivares-Peregrino, Victor
    Abundez-Pliego, Arturo
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [8] Variational integrator for fractional Euler-Lagrange equations
    Bourdin, Loic
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    APPLIED NUMERICAL MATHEMATICS, 2013, 71 : 14 - 23
  • [9] Fractional Euler-Lagrange equations for constrained systems
    Avkar, T
    Baleanu, D
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 84 - 90
  • [10] Solutions of Euler-Lagrange equations in fractional mechanics
    Klimek, M.
    XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 73 - 78