On the performance of delta hedging strategies in exponential Levy models

被引:4
|
作者
Denkl, Stephan [1 ]
Goy, Martina [2 ]
Kallsen, Jan [1 ]
Muhle-Karbe, Johannes [3 ]
Pauwels, Arnd [4 ]
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] KPMG AG, Wirtschaftsprufungsgesell, Audit Financial Serv, D-80339 Munich, Germany
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
[4] MEAG AssetManagement GmbH, Abt Risikocontrolling, D-80333 Munich, Germany
关键词
Laplace transform approach; Mean-variance hedging; Delta hedging; Levy processes; Model misspecification; G1; G11; G13; CONTINUOUS-TIME; RETURNS;
D O I
10.1080/14697688.2013.779742
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider the performance of non-optimal hedging strategies in exponential Levy models. Given that both the payoff of the contingent claim and the hedging strategy admit suitable integral representations, we use the Laplace transform approach of Hubalek et al. [Ann. Appl. Probab., 2006, 16(2), 853-885] to derive semi-explicit formulas for the resulting mean-squared hedging error in terms of the cumulant generating function of the underlying Levy process. In two numerical examples, we apply these results to compare the efficiency of the Black-Scholes hedge and the model delta with the mean-variance optimal hedge in a normal inverse Gaussian and a diffusion-extended CGMY Levy model.
引用
收藏
页码:1173 / 1184
页数:12
相关论文
共 50 条
  • [1] Hedging of Asian options under exponential Levy models: computation and performance
    Ballotta, Laura
    Gerrard, Russell
    Kyriakou, Ioannis
    [J]. EUROPEAN JOURNAL OF FINANCE, 2017, 23 (04): : 297 - 323
  • [2] TRACKING ERRORS FROM DISCRETE HEDGING IN EXPONENTIAL LEVY MODELS
    Broden, Mats
    Tankov, Peter
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2011, 14 (06) : 803 - 837
  • [3] Pricing and Hedging in Exponential Levy Models: Review of Recent Results
    Tankov, Peter
    [J]. PARIS-PRINCETON LECTURES ON MATHEMATICAL FINANCE 2010, 2011, 2003 : 319 - 359
  • [4] Minimal variance hedging of natural gas derivatives in exponential Levy models: Theory and empirical performance
    Ewald, Christian-Oliver
    Nawar, Roy
    Siu, Tak Kuen
    [J]. ENERGY ECONOMICS, 2013, 36 : 97 - 107
  • [5] Approximation of CVaR minimization for hedging under exponential-Levy models
    Deaconu, Madalina
    Lejay, Antoine
    Salhi, Khaled
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 326 : 171 - 182
  • [6] On the difference between locally risk-minimizing and delta hedging strategies for exponential L,vy models
    Arai, Takuji
    Imai, Yuto
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (03) : 845 - 858
  • [7] On the difference between locally risk-minimizing and delta hedging strategies for exponential Lévy models
    Takuji Arai
    Yuto Imai
    [J]. Japan Journal of Industrial and Applied Mathematics, 2017, 34 : 845 - 858
  • [8] Performance of hedging strategies in interval models
    Roorda, B
    Engwerda, J
    Schumacher, JM
    [J]. KYBERNETIKA, 2005, 41 (05) : 575 - 592
  • [9] Delta hedging strategies comparison
    De Giovanni, Domenico
    Ortobelli, Sergio
    Rachev, Svetlozar
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 185 (03) : 1615 - 1631
  • [10] Construction and Hedging of Optimal Payoffs in Levy Models
    Rueschendorf, Ludger
    Wolf, Viktor
    [J]. ADVANCED MODELLING IN MATHEMATICAL FINANCE: IN HONOUR OF ERNST EBERLEIN, 2016, : 331 - 377