Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models

被引:18
|
作者
Delattre, Maud [1 ,2 ,3 ]
Lavielle, Marc [1 ,2 ]
机构
[1] Inria Saclay, F-75005 Paris, France
[2] Univ Paris Sud Orsay, F-75005 Paris, France
[3] AgroParisTech, UMR MIA 518, F-75005 Paris, France
关键词
Stochastic differential equations; Mixed-effects models; SAEM; Extended Kalman filter; STOCHASTIC DIFFERENTIAL-EQUATIONS; EM ALGORITHM; MONTE-CARLO; IMPLEMENTATION; CONVERGENCE;
D O I
10.4310/SII.2013.v6.n4.a10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider some general mixed-effects diffusion models, in which the observations are made at discrete time points and include measurement errors. In these models, the observed likelihood is generally not explicit, making maximum likelihood estimation of the parameters particularly complex. We propose a specific inference methodology for these models. In particular, we combine the SAEM algorithm with the extended Kalman filter to estimate the population parameters. We also provide some tools for estimating the individual parameters, for recovering the individual underlying diffusion trajectories and for evaluating the model. The methods are evaluated on simulations and applied to a pharmacokinetics example.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 50 条