Weighted Norm Inequalities with General Weights for the Commutator of Calderon

被引:11
|
作者
Hu, Guo En [1 ]
Zhu, Yue Ping [2 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Dept Appl Math, Zhengzhou 450002, Peoples R China
[2] Nantong Univ, Sch Sci, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximation to the identity; weighted norm inequality; singular integral operator; maximal operator; non-smooth kernel; SINGULAR-INTEGRALS; MAXIMAL OPERATOR;
D O I
10.1007/s10114-012-1352-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by a sharp function estimate and an idea of Lerner, the authors establish some weighted estimates for the m-multilinear integral operator which is bounded from L-1(R-n)x . . . x L-1(R-n) to L-1/m,L-infinity(R-n), and the associated kernel K(x; y(1), . . . , y(m)) enjoys a regularity on the variable x. As an application, weighted estimates with general weights are given for the commutator of Calderon.
引用
收藏
页码:505 / 514
页数:10
相关论文
共 50 条