Efficient Reduced-Radial Basis Function-Based Mesh Deformation Within an Adjoint-Based Aerodynamic Optimization Framework

被引:16
|
作者
Poirier, Vincent [1 ,2 ]
Nadarajah, Siva [1 ,2 ]
机构
[1] McGill Univ, Computat Fluid Dynam Lab, Dept Mech Engn, Montreal, PQ H3A 2S6, Canada
[2] AIAA, Reston, VA 20191 USA
来源
JOURNAL OF AIRCRAFT | 2016年 / 53卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
SHAPE OPTIMIZATION; ALGORITHM; DESIGN; PARAMETERIZATION; QUALITY; FLOW;
D O I
10.2514/1.C033573
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. This work presents an extension to an existing fast and robust radial basis function mesh movement scheme. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the radial basis function method; however, it does so at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The mesh sensitivity is based on a combination of both the primary and secondary mesh movement schemes. The proposed scheme is demonstrated through three cases within a three-dimensional Euler flow: 1)the reduction of pressure drag at constant lift on the Onera M6 wing; 2) an inverse pressure design on the Onera M6; and 3) a drag minimization of the Boeing 747 wing-body aircraft.
引用
收藏
页码:1905 / 1921
页数:17
相关论文
共 50 条
  • [1] Efficient RBF mesh deformation within an adjoint-based aerodynamic optimization framework
    Department of Mechanical Engineering, McGill University, Montreal, QC H3A 2S6, Canada
    [J]. AIAA Aerosp. Sci. Meet. Incl. New Horiz. Forum Aerosp. Expo,
  • [2] A parallel multiselection greedy method for the radial basis function-based mesh deformation
    Li, Chao
    Xu, Xinhai
    Wang, Jinyu
    Xu, Liyang
    Ye, Shuai
    Yang, Xuejun
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (10) : 1561 - 1588
  • [3] Efficient Method to Eliminate Mesh Sensitivity in Adjoint-Based Optimization
    Mura, Gabriele L.
    Hinchliffe, Benjamin L.
    Qin, Ning
    Brezillon, Joel
    [J]. AIAA JOURNAL, 2017, 55 (04) : 1140 - 1151
  • [4] Discrete Adjoint-Based Aerodynamic Shape Optimization Framework for Natural Laminar Flows
    Kaya, Halil
    Tuncer, Ismail H.
    [J]. AIAA JOURNAL, 2022, 60 (01) : 197 - 212
  • [5] AERODYNAMIC OPTIMIZATION OF THE SRV2 RADIAL COMPRESSOR USING AN ADJOINT-BASED OPTIMIZATION METHOD
    Chatel, Arnaud
    Verstraete, Tom
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 10D, 2022,
  • [6] Adjoint-based methods in aerodynamic design-optimization
    Cliff, EM
    Heinkenschloss, M
    Shenoy, AR
    [J]. COMPUTATIONAL METHODS FOR OPTIMAL DESIGN AND CONTROL, 1998, 24 : 91 - 112
  • [7] ADJOINT-BASED MULTIDISCIPLINARY, MULTIPOINT OPTIMIZATION OF A RADIAL TURBINE CONSIDERING AERODYNAMIC AND STRUCTURAL PERFORMANCES
    Mueller, Lasse
    Verstraete, Tom
    Schwalbach, Marc
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 2D, 2019,
  • [8] Adjoint-based aerodynamic shape optimization on unstructured meshes
    Carpentieri, G.
    Koren, B.
    van Tooren, M. J. L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) : 267 - 287
  • [9] Adjoint-Based Aerodynamic Optimization of Supersonic Biplane Airfoils
    Hu, Rui
    Jameson, Antony
    Wang, Qiqi
    [J]. JOURNAL OF AIRCRAFT, 2012, 49 (03): : 802 - 814
  • [10] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    [J]. COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795