Estimation of multivariate conditional-tail-expectation using Kendall's process

被引:7
|
作者
Di Bernardino, Elena [1 ]
Prieur, Clementine [2 ]
机构
[1] Conservatoire Natl Arts & Metiers, IMATH, EA4629, F-75003 Paris, France
[2] Univ Grenoble 1, Inria Project MOISE, Lab Jean Kuntzmann, Tour IRMA, F-38041 Grenoble 9, France
关键词
62H12; 62G20; 62G05; 62E17; multivariate Kendall distribution; multidimensional risk measures; Kendall's process; LEVEL SETS; DEPENDENCE;
D O I
10.1080/10485252.2014.889137
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the problem of estimating the multivariate version of the Conditional-Tail-Expectation, proposed by Di Bernardino et al. [(2013), 'Plug-in Estimation of Level Sets in a Non-Compact Setting with Applications in Multivariable Risk Theory', ESAIM: Probability and Statistics, (17), 236-256]. We propose a new nonparametric estimator for this multivariate risk-measure, which is essentially based on Kendall's process [Genest and Rivest, (1993), 'Statistical Inference Procedures for Bivariate Archimedean Copulas', Journal of American Statistical Association, 88(423), 1034-1043]. Using the central limit theorem for Kendall's process, proved by Barbe et al. [(1996), 'On Kendall's Process', Journal of Multivariate Analysis, 58(2), 197-229], we provide a functional central limit theorem for our estimator. We illustrate the practical properties of our nonparametric estimator on simulations and on two real test cases. We also propose a comparison study with the level sets-based estimator introduced in Di Bernardino et al. [(2013), 'Plug-In Estimation of Level Sets in A Non-Compact Setting with Applications in Multivariable Risk Theory', ESAIM: Probability and Statistics, (17), 236-256] and with (semi-)parametric approaches.
引用
收藏
页码:241 / 267
页数:27
相关论文
共 50 条