Nodal solutions for a supercritical semilinear problem with variable exponent

被引:24
|
作者
Cao, Daomin [1 ,2 ]
Li, Shuanglong [2 ]
Liu, Zhongyuan [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510405, Guangdong, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
关键词
LINEAR ELLIPTIC-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; EXISTENCE;
D O I
10.1007/s00526-018-1305-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following nonlinear supercritical elliptic problem with variable exponent, {- Delta u = vertical bar u vertical bar(2*+vertical bar x vertical bar alpha-2)u, in B-1 (0), u = 0, on partial derivative B-1 (0), where 2* = 2N/N-2, 0 < alpha < min{N/2, N - 2}, and B-1(0) is the unit ball in R-N, N >= 3. For any k is an element of N, we find, by variational methods, a pair of nodal solutions for this problem, which has exactly k nodal points.
引用
收藏
页数:19
相关论文
共 50 条