Generalized Pyramidal Tours for the Generalized Traveling Salesman Problem

被引:3
|
作者
Khachay, Michael [1 ,2 ]
Neznakhina, Katherine [1 ]
机构
[1] Ural Fed Univ, Krasovsky Inst Math & Mech, Ekaterinburg, Russia
[2] Omsk State Tech Univ, Omsk, Russia
基金
俄罗斯科学基金会;
关键词
ALGORITHMS;
D O I
10.1007/978-3-319-71150-8_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce the notion of l-quasi-pyramidal and l-pseudo-pyramidal tours extending the classic notion of pyramidal tours to the case of the Generalized Traveling Salesman Problem (GTSP). We show that, for the instance of GTSP on n cities and k clusters with arbitrary weights, l-quasi-pyramidal and l-pseudo-pyramidal optimal tours can be found in time O(4(l)n(3)) and O(2(l) k(l+4)n(3)), respectively. Consequently, we show that, in the most general setting, GTSP belongs to FPT for parametrizations induced by these special kinds of tours. Also, we describe a non-trivial polynomially solvable subclass of GTSP, for which the existence of l-quasi-pyramidal optimal tour (for some fixed value of l) is proved.
引用
下载
收藏
页码:265 / 277
页数:13
相关论文
共 50 条