Representation of US Warm Temperature Extremes in Global Climate Model Ensembles
被引:5
|
作者:
Hogan, Emily
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USAUniv Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
Hogan, Emily
[1
]
Nicholas, Robert E.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USAUniv Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
Nicholas, Robert E.
[2
]
Keller, Klaus
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
Penn State Univ, Dept Geosci, University Pk, PA 16802 USAUniv Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
Keller, Klaus
[2
,3
]
Eilts, Stephanie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USAUniv Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
Eilts, Stephanie
[1
]
Sriver, Ryan L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USAUniv Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
Sriver, Ryan L.
[1
]
机构:
[1] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
[2] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
Extreme temperature events can have considerable negative impacts on sectors such as health, agriculture, and transportation. Observational evidence indicates the severity and frequency of warm extremes are increasing over much of the United States, but there are sizeable challenges both in estimating extreme temperature changes and in quantifying the relevant associated uncertainties. This study provides a simple statistical framework using a block maxima approach to analyze the representation of warm temperature extremes in several recent global climate model ensembles. Uncertainties due to structural model differences, grid resolution, and internal variability are characterized and discussed. Results show that models and ensembles differ greatly in the representation of extreme temperature over the United States, and variability in tail events is dependent on time and anthropogenic warming, which can influence estimates of return periods and distribution parameter estimates using generalized extreme value (GEV) distributions. These effects can considerably influence the uncertainty of model hindcasts and projections of extremes. Several idealized regional applications are highlighted for evaluating ensemble skill and trends, based on quantile analysis and root-mean-square errors in the overall sample and the upper tail. The results are relevant to regional climate assessments that use global model outputs and that are sensitive to extreme warm temperature. Accompanying this manuscript is a simple toolkit using the R statistical programming language for characterizing extreme events in gridded datasets.
机构:
UNSW, Climate Change Res Ctr, Sydney, NSW, Australia
ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, AustraliaUNSW, Climate Change Res Ctr, Sydney, NSW, Australia
Herger, Nadja
Angelil, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
UNSW, Climate Change Res Ctr, Sydney, NSW, Australia
ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, AustraliaUNSW, Climate Change Res Ctr, Sydney, NSW, Australia
Angelil, Oliver
Abramowitz, Gab
论文数: 0引用数: 0
h-index: 0
机构:
UNSW, Climate Change Res Ctr, Sydney, NSW, Australia
ARC Ctr Excellence Climate Extremes, Sydney, NSW, AustraliaUNSW, Climate Change Res Ctr, Sydney, NSW, Australia
Abramowitz, Gab
Donat, Markus
论文数: 0引用数: 0
h-index: 0
机构:
UNSW, Climate Change Res Ctr, Sydney, NSW, Australia
ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, AustraliaUNSW, Climate Change Res Ctr, Sydney, NSW, Australia
Donat, Markus
Stone, Daithi
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Berkeley Natl Lab, Berkeley, CA USA
Global Climate Adaptat Partnership, Oxford, EnglandUNSW, Climate Change Res Ctr, Sydney, NSW, Australia
Stone, Daithi
Lehmann, Karsten
论文数: 0引用数: 0
h-index: 0
机构:
Satalia, Berlin, GermanyUNSW, Climate Change Res Ctr, Sydney, NSW, Australia