Application of a metal-insulator-semiconductor (MIS) sensor for extracellular redox potential detection

被引:5
|
作者
Wang, Jun [1 ]
Zhao, Huixin [1 ]
Zhang, Qian [1 ]
Cai, Hua [1 ]
Wang, Ping [1 ]
机构
[1] Zhejiang Univ, Biosensor Natl Special Lab, Key Lab Biomed Engn, Minist Educ,Dept Biomed Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-insulator-semiconductor sensor; Extracellular redox potential; Electrochemical potentiometric detection; Mitochondrial electron transport chain; Reactive oxygen species; CELLS; STATE; PROLIFERATION; CULTURE; GROWTH; GLUTATHIONE; EXPRESSION;
D O I
10.1016/j.snb.2013.03.046
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Extracellular redox potential is an important regulator of cell-microenvironmental interactions. It works in concert with intracellular redox state to control the electron transport in redox signaling. The redox regulation can influence cell surface proteins such as receptors, transport proteins, and enzymes that contain thiol moieties, and then cause significant impact on cell proliferation, differentiation and apoptosis. The present work employs an electrochemical potentiometric means to probe extracellular redox potential of living cells. A metal-insulator-semiconductor structured sensor is used based on an AC photovoltage technique. The sensor has a sensitivity of 53.2 mV/log([Fe(II)]/[Fe(III)]) for Fe(II)/Fe(III) redox couple and 25.4 mV/log([CySS]/[Cys](2)) for Cys/CySS couple. Then kidney cells are incubated on the sensor surface for physiological redox potential study. The potential is found to be reduced at physiological activity and the reduction rate is related with cell density. The reduction rate decreases after the inhibition of mitochondrial complex I. Evidence is presented that the mitochondrial electron transport chain has significant influence on the extracellular reduction rate. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 545
页数:8
相关论文
共 50 条
  • [1] Theory and Simulation of Metal-Insulator-Semiconductor (MIS) Photoelectrodes
    King, Alex J.
    Weber, Adam Z.
    Bell, Alexis T.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (19) : 23024 - 23039
  • [2] HYSTERESIS AND GOLD IN METAL-INSULATOR-SEMICONDUCTOR (MIS) CAPACITORS
    BROTHERTON, SD
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1968, 25 (02) : 187 - +
  • [3] Metal-Insulator-Semiconductor (MIS) Structure with AlN Dielectric
    Mahyuddin, A.
    Hassan, Z.
    Cheong, K. Y.
    [J]. NANOSCIENCE AND NANOTECHNOLOGY, 2009, 1136 : 494 - +
  • [4] A METAL-INSULATOR-SEMICONDUCTOR (MIS) PHOTO-CATHODE
    MILLER, BS
    JONES, TL
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (11) : 2089 - 2096
  • [5] Structure-Property Relationships in Redox-Derivatized Metal-Insulator-Semiconductor (MIS) Photoanodes
    Aroonratsameruang, Ponart
    Pattanasattayavong, Pichaya
    Dorcet, Vincent
    Meriadec, Cristelle
    Ababou-Girard, Soraya
    Fryars, Stephanie
    Loget, Gabriel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (47): : 25907 - 25916
  • [6] Metal-insulator-semiconductor (MIS) photoelectrodes: distance improves performance
    Jack, Joshua
    Ren, Zhiyong Jason
    [J]. NATIONAL SCIENCE REVIEW, 2021, 8 (08)
  • [7] Metal-insulator-semiconductor(MIS) photoelectrodes: distance improves performance
    Joshua Jack
    Zhiyong Jason Ren
    [J]. National Science Review, 2021, 8 (08) : 7 - 8
  • [8] COLLOQUIUM ON APPLICATION OF METAL-INSULATOR-SEMICONDUCTOR STRUCTURES
    不详
    [J]. BULLETIN D INFORMATIONS SCIENTIFIQUES ET TECHNIQUES, 1969, (143): : 67 - &
  • [9] CURRENT MULTIPLICATION IN METAL-INSULATOR-SEMICONDUCTOR (MIS) TUNNEL-DIODES
    GREEN, MA
    SHEWCHUN, J
    [J]. SOLID-STATE ELECTRONICS, 1974, 17 (04) : 349 - 365
  • [10] A COMPREHENSIVE ANALYTICAL MODEL FOR METAL-INSULATOR-SEMICONDUCTOR (MIS) DEVICES - A SOLAR-CELL APPLICATION
    DOGHISH, MY
    HO, FD
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (08) : 1446 - 1454