Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot

被引:63
|
作者
Kim, Bum-Kyu [1 ,2 ]
Ahn, Ye-Hwan [1 ,3 ]
Kim, Ju-Jin
Choi, Mahn-Soo [3 ]
Bae, Myung-Ho [1 ]
Kang, Kicheon [4 ]
Lim, Jong Soo [5 ]
Lopez, Rosa [5 ,6 ]
Kim, Nam [1 ]
机构
[1] Korea Res Inst Stand & Sci, Taejon 305340, South Korea
[2] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[3] Korea Univ, Dept Phys, Seoul 136713, South Korea
[4] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea
[5] CSIC UIB, IFISC, E-07122 Palma de Mallorca, Spain
[6] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Spain
基金
新加坡国家研究基金会;
关键词
CARBON NANOTUBES; JUNCTIONS;
D O I
10.1103/PhysRevLett.110.076803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report nonequilibrium transport measurements of gate-tunable Andreev bound states in a carbon nanotube quantum dot coupled to two superconducting leads. In particular, we observe clear features of two types of Kondo ridges, which can be understood in terms of the interplay between the Kondo effect and superconductivity. In the first type (type I), the coupling is strong and the Kondo effect is dominant. Levels of the Andreev bound states display anticrossing in the middle of the ridge. On the other hand, crossing of the two Andreev bound states is shown in the second type (type II) together with the 0-pi transition of the Josephson junction. Our scenario is well understood in terms of only a single dimensionless parameter, k(B)T(K)(min)/Delta, where T-K(min) and Delta are the minimum Kondo temperature of a ridge and the superconducting order parameter, respectively. Our observation is consistent with measurements of the critical current, and is supported by numerical renormalization group calculations. DOI: 10.1103/PhysRevLett.110.076803
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Charge distribution in a Kondo-correlated quantum dot
    Sprinzak, D
    Ji, Y
    Heiblum, M
    Mahalu, D
    Shtrikman, H
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [2] Anomalous transmission phase of a Kondo-correlated quantum dot
    Kang, KC
    Choi, MS
    Lee, S
    [J]. PHYSICAL REVIEW B, 2005, 71 (04)
  • [3] Probing a Kondo-correlated quantum dot with spin spectroscopy
    Kupidura, D
    Rogge, MC
    Reinwald, M
    Wegscheider, W
    Haug, RJ
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (04)
  • [4] Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field
    Camjayi, Alberto
    Arrachea, Liliana
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (03)
  • [5] Quantum Fluctuations along Symmetry Crossover in a Kondo-Correlated Quantum Dot
    Ferrier, Meydi
    Arakawa, Tomonori
    Hata, Tokuro
    Fujiwara, Ryo
    Delagrange, Raphaelle
    Deblock, Richard
    Teratani, Yoshimichi
    Sakano, Rui
    Oguri, Akira
    Kobayashi, Kensuke
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (19)
  • [6] Understanding the Josephson Current through a Kondo-Correlated Quantum Dot
    Luitz, D. J.
    Assaad, F. F.
    Novotny, T.
    Karrasch, C.
    Meden, V.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (22)
  • [7] Transport through Andreev bound states in a graphene quantum dot
    Dirks, Travis
    Hughes, Taylor L.
    Lal, Siddhartha
    Uchoa, Bruno
    Chen, Yung-Fu
    Chialvo, Cesar
    Goldbart, Paul M.
    Mason, Nadya
    [J]. NATURE PHYSICS, 2011, 7 (05) : 386 - 390
  • [8] Transport through Andreev bound states in a graphene quantum dot
    Dirks T.
    Hughes T.L.
    Lal S.
    Uchoa B.
    Chen Y.-F.
    Chialvo C.
    Goldbart P.M.
    Mason N.
    [J]. Nature Physics, 2011, 7 (5) : 386 - 390
  • [9] Fano effect on shot noise through a Kondo-correlated quantum dot
    Fang, Tie-Feng
    Zuo, Wei
    Chen, Ji-Yan
    [J]. PHYSICAL REVIEW B, 2008, 77 (12):
  • [10] Transport through Andreev bound states in a Weyl semimetal quantum dot
    Mukherjee, Dibya Kanti
    Rao, Sumathi
    Kundu, Arijit
    [J]. PHYSICAL REVIEW B, 2017, 96 (16)