Data-Driven Multi-unit Monitoring Scheme with Hierarchical Fault Detection and Diagnosis

被引:0
|
作者
Zhou, Yingya [1 ]
Chioua, Moncef [2 ]
Ni, Weidou [1 ]
机构
[1] Tsinghua Univ, State Key Lab Power Syst, Dept Thermal Engn, Tsinghua BP Clean Energy Ctr, Beijing 100084, Peoples R China
[2] ABB Corp Res Ctr Germany, D-68526 Ladenburg, Germany
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Various areas see the trend of increasing degree of decentralization and automation. Conventional component or unit based monitoring scheme by analytical modeling could be tedious and costly in dealing with increased number of entities. A holistic data-driven scheme able to monitor multiple units and hierarchically detect and diagnose faults is proposed, in which Multi-way Principal Component Analysis (MPCA) is employed as data analysis algorithm. The proposed scheme is illustrated using data collected from an actual onshore wind farm with multiple wind turbines. The obtained fault detection and diagnosis results are validated using maintenance reports.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] Data-driven fault detection and diagnosis for UAV swarms
    Li, Runze
    Jiang, Bin
    Yu, Ziquan
    Lu, Ningyun
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (05): : 1586 - 1592
  • [2] Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey
    Melo, Afranio
    Camara, Mauricio Melo
    Pinto, Jose Carlos
    [J]. PROCESSES, 2024, 12 (02)
  • [3] A data-driven approach to simultaneous fault detection and diagnosis in data centers
    Asgari, Sahar
    Gupta, Rohit
    Puri, Ishwar K.
    Zheng, Rong
    [J]. APPLIED SOFT COMPUTING, 2021, 110
  • [4] Data-driven Fault Diagnosis Scheme for Complex Integrated Control Systems
    An, Baoran
    Wu, Huai
    Yin, Shen
    [J]. 2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 1255 - 1258
  • [5] Data-driven Fault Detection and Diagnosis for HVAC water chillers
    Beghi, A.
    Brignoli, R.
    Cecchinato, L.
    Menegazzo, G.
    Rampazzo, M.
    Simmini, F.
    [J]. CONTROL ENGINEERING PRACTICE, 2016, 53 : 79 - 91
  • [6] Fault detection, diagnosis and data-driven modeling in HVAC chillers
    Namburu, SM
    Luo, JH
    Azam, M
    Choi, K
    Pattipati, KR
    [J]. Signal Processing, Sensor Fusion, and Target Recognition XIV, 2005, 5809 : 143 - 154
  • [7] Data-driven fault detection and isolation scheme for a wind turbine benchmark
    de Bessa, Iury Valente
    Palhares, Reinaldo Martinez
    Silveira Vasconcelos D'Angelo, Marcos Flavio
    Chaves Filho, Joao Edgar
    [J]. RENEWABLE ENERGY, 2016, 87 : 634 - 645
  • [8] A Lightweight and Explainable Data-Driven Scheme for Fault Detection of Aerospace Sensors
    Li, Zhongzhi
    Zhang, Yiming
    Ai, Jianliang
    Zhao, Yunmei
    Yu, Yushu
    Dong, Yiqun
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 8392 - 8410
  • [9] A Data-driven Approach for Fault Detection in the Alternator Unit of Automotive Systems
    Vijayan, Arunkumar
    Tahoori, Mehdi B.
    Kintzli, Ewald
    Lohmann, Timm
    Handl, Juergen Hans
    [J]. 2022 IEEE EUROPEAN TEST SYMPOSIUM (ETS 2022), 2022,
  • [10] Monitoring a robot swarm using a data-driven fault detection approach
    Khaldi, Belkacem
    Harrou, Fouzi
    Cherif, Foudil
    Sun, Ying
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 97 : 193 - 203