Bootstrap methods for developing predictive models

被引:485
|
作者
Austin, PC
Tu, JV
机构
[1] Inst Clin Evaluat Sci, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Dept Publ Hlth Sci, Toronto, ON, Canada
[3] Univ Toronto, Dept Hlth Policy Management & Evaluat, Toronto, ON, Canada
[4] Inst Clin Evaluat Sci, Toronto, ON, Canada
[5] Sunnybrook & Womens Coll, Hlth Sci Ctr, Div Gen Internal Med, Toronto, ON, Canada
来源
AMERICAN STATISTICIAN | 2004年 / 58卷 / 02期
基金
加拿大健康研究院;
关键词
acute myocardial infarction; epidemiological research; mortality; multivariate analysis; regression models; variable selection;
D O I
10.1198/0003130043277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers frequently use automated model selection methods such as backwards elimination to identify variables that are independent predictors of an outcome under consideration. We propose using bootstrap resampling in conjunction with automated variable selection methods to develop parsimonious prediction models. Using data on patients admitted to hospital with a heart attack, we demonstrate that selecting those variables that were identified as independent predictors of mortality in at least 60% of the bootstrap samples resulted in a parsimonious model with excellent predictive ability.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 50 条
  • [1] Bootstrap methods for median regression models
    Horowitz, JL
    ECONOMETRICA, 1998, 66 (06) : 1327 - 1351
  • [2] On prediction intervals based on predictive likelihood or bootstrap methods
    Hall, P
    Peng, L
    Tajvidi, N
    BIOMETRIKA, 1999, 86 (04) : 871 - 880
  • [3] Jackknife and bootstrap methods in the identification of dynamic models
    Duchesne, C
    MacGregor, JF
    JOURNAL OF PROCESS CONTROL, 2001, 11 (05) : 553 - 564
  • [4] Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy
    Joshi, Chaitanya
    Curtis-Ham, Sophie
    D'Ath, Clayton
    Searle, Deane
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (09)
  • [5] Bootstrap internal validation command for predictive logistic regression models
    Fernandez-Felix, B. M.
    Garcia-Esquinas, E.
    Muriel, A.
    Royuela, A.
    Zamora, J.
    STATA JOURNAL, 2021, 21 (02): : 498 - 509
  • [6] Fast cluster bootstrap methods for linear regression models
    MacKinnon, James G.
    ECONOMETRICS AND STATISTICS, 2023, 26 : 52 - 71
  • [7] Developing Predictive Models of Health Literacy
    Martin, Laurie T.
    Ruder, Teague
    Escarce, Jose J.
    Ghosh-Dastidar, Bonnie
    Sherman, Daniel
    Elliott, Marc
    Bird, Chloe E.
    Fremont, Allen
    Gasper, Charles
    Culbert, Arthur
    Lurie, Nicole
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2009, 24 (11) : 1211 - 1216
  • [8] Developing predictive and holistic models of schizophrenia
    Isohanni, M
    Isohanni, I
    Mäki, P
    Miettunen, J
    Croudace, T
    Jones, PB
    SCHIZOPHRENIA RESEARCH, 2006, 81 : 264 - 265
  • [9] COMPARING NONNESTED MODELS IN SURVIVAL ANALYSIS BY BOOTSTRAP METHODS
    BECHER, H
    WAHRENDORF, J
    BIOMETRICS, 1985, 41 (04) : 1082 - 1082
  • [10] Developing Predictive Models of Health Literacy
    Laurie T. Martin
    Teague Ruder
    José J. Escarce
    Bonnie Ghosh-Dastidar
    Daniel Sherman
    Marc Elliott
    Chloe E. Bird
    Allen Fremont
    Charles Gasper
    Arthur Culbert
    Nicole Lurie
    Journal of General Internal Medicine, 2009, 24 : 1211 - 1216