Researchers frequently use automated model selection methods such as backwards elimination to identify variables that are independent predictors of an outcome under consideration. We propose using bootstrap resampling in conjunction with automated variable selection methods to develop parsimonious prediction models. Using data on patients admitted to hospital with a heart attack, we demonstrate that selecting those variables that were identified as independent predictors of mortality in at least 60% of the bootstrap samples resulted in a parsimonious model with excellent predictive ability.
机构:
Hosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, SpainHosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
Fernandez-Felix, B. M.
Garcia-Esquinas, E.
论文数: 0引用数: 0
h-index: 0
机构:
Autonomous Univ Madrid, Dept Prevent Med & Publ Hlth, Madrid, Spain
Idipaz, Madrid, SpainHosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
Garcia-Esquinas, E.
Muriel, A.
论文数: 0引用数: 0
h-index: 0
机构:
Hosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBERESP, Madrid, SpainHosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
Muriel, A.
Royuela, A.
论文数: 0引用数: 0
h-index: 0
机构:
CIBERESP, Biostat Unit, Puerta de Hierro Biomed Res Inst, Madrid, SpainHosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
Royuela, A.
Zamora, J.
论文数: 0引用数: 0
h-index: 0
机构:
Hosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBERESP, Madrid, Spain
Univ Birmingham, Inst Metab & Syst Res, Birmingham, W Midlands, EnglandHosp Ramon y Cajal IRYCIS, Clin Biostat Unit, CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain