MODIFIED ENERGY FUNCTIONALS AND THE NLS APPROXIMATION

被引:6
|
作者
Cummings, Patrick [1 ]
Wayne, C. Eugene [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Modulation equation; nonlinear schrodinger equation; normal forms; modified energy; resonance; NONLINEAR SCHRODINGER-EQUATION; WATER-WAVE PROBLEM; MODULATION APPROXIMATION; NORMAL FORMS; JUSTIFICATION; SYSTEMS;
D O I
10.3934/dcds.2017054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model equation from [14] that captures important properties of the water wave equation. We give a new proof of the fact that wave packet solutions of this equation are approximated by the nonlinear Schrodinger equation. This proof both simplifies and strengthens the results of [14] so that the approximation holds for the full interval of existence of the approximate NLS solution rather than just a subinterval. Furthermore, the proof avoids the problems associated with inverting the normal form transform in [14] by working with a modified energy functional motivated by [1] and [8].
引用
收藏
页码:1295 / 1321
页数:27
相关论文
共 50 条
  • [1] Minimizers of fractional NLS energy functionals in R2
    Liu, Lintao
    Teng, Kaimin
    Yang, Jie
    Chen, Haibo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [2] APPROXIMATION OF CONVEX FUNCTIONALS BY OBSTACLE FUNCTIONALS
    LONGO, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 : 229 - 275
  • [3] Monotone approximation of energy functionals for mappings into metric spaces - II
    Sturm, KT
    POTENTIAL ANALYSIS, 1999, 11 (04) : 359 - 386
  • [4] On the Approximation of Anisotropic Energy Functionals by Riemannian Energies via Homogenization
    Knoke, Till
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) : 449 - 483
  • [5] Monotone Approximation of Energy Functionals for Mappings into Metric Spaces -- II
    K.T. Sturm
    Potential Analysis, 1999, 11 : 359 - 386
  • [6] Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models
    Baron, H. E.
    Zakrzewski, W. J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [7] Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models
    H.E. Baron
    W.J. Zakrzewski
    Journal of High Energy Physics, 2016
  • [8] Approximation of Solitons in the Discrete NLS Equation
    Cuevas, Jesus
    James, Guillaume
    Kevrekidis, Panayotis G.
    Malomed, Boris A.
    Sanchez-Rey, Bernardo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 124 - 136
  • [9] Approximation of Solitons in the Discrete NLS Equation
    Jesús Cuevas
    Guillaume James
    Panayotis G Kevrekidis
    Boris A Malomed
    Bernardo Sánchez-Rey
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 124 - 136
  • [10] Monotone approximation of energy functionals for mappings into metric spaces .1.
    Sturm, KT
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 486 : 129 - 151