Growth orientations and mechanical properties of Cu6Sn5 and (Cu, Ni)6Sn5 on poly-crystalline Cu

被引:61
|
作者
Mu, Dekui [1 ]
Yasuda, Hideyuki [2 ]
Huang, Han [1 ]
Nogita, Kazuhiro [1 ,2 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[2] Osaka Univ, Dept Adapt Machine Syst, Suita, Osaka 5650871, Japan
关键词
Growth orientation; Pole figures; Synchrotron radiation; Mechanical properties; Nanoindentation; Intermetallics; Crystal growth; X-ray diffraction; INTERMETALLIC COMPOUNDS; INTERFACIAL REACTIONS; THERMAL-EXPANSION; MOLTEN TIN; NI; SOLDER; SN; EVOLUTION; COPPER; CU3SN;
D O I
10.1016/j.jallcom.2012.04.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead-free solders are important materials in current generation electrical packages, due to the increasingly stringent legislative requirement aimed at reducing the use of lead. The lead-free solders based on the Sn-Cu system with Ni addition have become popular because of their superior soldering properties, as well as their comparatively low cost. This research investigates the effect of Ni addition on the growth morphologies, crystal orientations and mechanical properties of Cu6Sn5 at the interface between hyper-eutectic Sn-Cu high-temperature lead-free solder alloys and Cu substrates, prior to and after aging, by the use of X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation. The (Cu, Ni)(6)Sn-5 in Sn-Cu-Ni/Cu solder joints showed a more strongly oriented (1 0 1) texture, compared to the Cu6Sn5 in Sn-Cu/Cu solder joints. The Ni-induced (1 0 1) texture contributes to higher and more scattered average values with larger standard deviations in both elastic modulus and hardness for (Cu, Ni)(6)Sn-5. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [1] Anisotropic mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5
    Mu, D.
    Huang, H.
    Nogita, K.
    MATERIALS LETTERS, 2012, 86 : 46 - 49
  • [2] Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures
    Mu, Dekui
    Huang, Han
    McDonald, Stuart D.
    Nogita, Kazuhiro
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (02) : 304 - 311
  • [3] Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures
    Dekui Mu
    Han Huang
    Stuart D. McDonald
    Kazuhiro Nogita
    Journal of Electronic Materials, 2013, 42 : 304 - 311
  • [4] Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5
    Mu, Dekui
    Read, Jonathan
    Yang, Yafeng
    Nogita, Kazuhiro
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (20) : 2660 - 2664
  • [5] Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5
    Dekui Mu
    Jonathan Read
    Yafeng Yang
    Kazuhiro Nogita
    Journal of Materials Research, 2011, 26 : 2660 - 2664
  • [6] Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu,Ni)6Sn5 on diverse crystal planes
    Mu, D.
    Huang, H.
    McDonald, S. D.
    Read, J.
    Nogita, K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 566 : 126 - 133
  • [7] Decomposition of Cu6Sn5 particles in solder for the growth of a ternary (Cu1-xNix)6Sn5 layer on a Ni substrate
    Chung, Bo-Mook
    Hong, Kyoung-Kook
    Huh, Joo-Youl
    METALS AND MATERIALS INTERNATIONAL, 2009, 15 (03) : 487 - 492
  • [8] Decomposition of Cu6Sn5 particles in solder for the growth of a ternary (Cu1−xNix)6Sn5 layer on a Ni substrate
    Bo-Mook Chung
    Kyoung-Kook Hong
    Joo-Youl Huh
    Metals and Materials International, 2009, 15 : 487 - 492
  • [9] Nanoindentation creep on Cu3Sn, Cu6Sn5 and (Cu, Ni)6Sn5 intermetallic compounds grown in electrodeposited multilayered thin film
    Haseeb, A. S. M. A.
    Rahman, Abu Zayed Mohammad Saliqur
    Chia, Pay Ying
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (02) : 1258 - 1263
  • [10] Nanoindentation creep on Cu3Sn, Cu6Sn5 and (Cu, Ni)6Sn5 intermetallic compounds grown in electrodeposited multilayered thin film
    A. S. M. A. Haseeb
    Abu Zayed Mohammad Saliqur Rahman
    Pay Ying Chia
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 1258 - 1263