Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion

被引:28
|
作者
Fajraoui, N. [1 ]
Mara, T. A. [2 ]
Younes, A. [1 ]
Bouhlila, R. [3 ]
机构
[1] Univ Strasbourg, EOST, CNRS, Lab Hydrol & Geochim Strasbourg, 1 Rue Blessig, F-67084 Strasbourg, France
[2] Univ La Reunion, PIMENT, Moufia 97715, Reunion, France
[3] Ecole Natl Ingn Tunis, Lab Modelisat Hydraul & Environm, Tunis, Tunisia
来源
WATER AIR AND SOIL POLLUTION | 2012年 / 223卷 / 07期
关键词
Reactive transport; Parameter estimation; Metamodel; Global sensitivity analysis; Sparse polynomial chaos expansion; GROUNDWATER; DESIGN; ALGORITHM; OPERATOR; INDEXES; MODELS;
D O I
10.1007/s11270-012-1183-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present in this paper a new strategy based on the use of polynomial chaos expansion (PCE) for both global sensitivity analysis and parameter optimization. To limit the number of evaluations of the direct model, we develop a simple and efficient procedure to construct a sparse PCE where only coefficients that have a significant contribution to the variance of the model are retained. Parameter estimation is performed using an adaptive procedure where the intervals of variation of the parameters are progressively reduced using information from sensitivity analysis calculated using the sparse PCE. The strategy is shown to be effective for the parameter estimation of two reactive transport problems: a synthetic reactive transport problem involving the Freundlich sorption isotherm and a field experiment of Valocchi et al. (Water Resources Research 17:1517-1527, 1981) involving nonlinear ion exchange reactions.
引用
收藏
页码:4183 / 4197
页数:15
相关论文
共 50 条
  • [1] Reactive Transport Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial Chaos Expansion
    N. Fajraoui
    T. A. Mara
    A. Younes
    R. Bouhlila
    [J]. Water, Air, & Soil Pollution, 2012, 223 : 4183 - 4197
  • [2] Bayesian sparse polynomial chaos expansion for global sensitivity analysis
    Shao, Qian
    Younes, Anis
    Fahs, Marwan
    Mara, Thierry A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 474 - 496
  • [3] Global Sensitivity Analysis for Islanded Microgrid Based on Sparse Polynomial Chaos Expansion
    Wang H.
    Yan Z.
    Xu X.
    He K.
    [J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (10): : 44 - 52
  • [4] Global sensitivity analysis using sparse grid interpolation and polynomial chaos
    Buzzard, Gregery T.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 107 : 82 - 89
  • [5] Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion
    Garcia-Cabrejo, Oscar
    Valocchi, Albert
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2014, 126 : 25 - 36
  • [6] Sensitivity and reliability analysis of a globe valve using an adaptive sparse polynomial chaos expansion
    Berveiller, M.
    Blatman, G.
    [J]. APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 645 - 652
  • [7] Global sensitivity analysis of damped sandwich plates using sparse polynomial chaos expansions
    Hamdaoui, Mohamed
    Daya, El Mostafa
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [8] On the use of sparse Bayesian learning-based polynomial chaos expansion for global reliability sensitivity analysis
    Bhattacharyya, Biswarup
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [9] Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis
    Cao, Lixiong
    Liu, Jie
    Jiang, Chao
    Liu, Guangzhao
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
  • [10] Global Sensitivity Analysis for Regional Integrated Electricity and Gas System Based on Sparse Polynomial Chaos Expansion
    Hu X.
    Zhao X.
    Feng X.
    [J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (13): : 2805 - 2816