Modeling individual differences using Dirichlet processes

被引:88
|
作者
Navarro, DJ [1 ]
Griffiths, TL
Steyvers, M
Lee, MD
机构
[1] Univ Adelaide, Dept Psychol, Adelaide, SA 5005, Australia
[2] Brown Univ, Dept Cognit & Linguist Sci, Providence, RI 02912 USA
[3] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92717 USA
基金
澳大利亚研究理事会;
关键词
individual differences; Dirichlet processes; Bayesian nonparametrics;
D O I
10.1016/j.jmp.2005.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a Bayesian framework for modeling individual differences, in which Subjects are assumed to belong to one of a potentially infinite number of groups. In this model, the groups observed in any particular data set are not viewed as a fixed set that fully explains the variation between individuals, but rather as representatives of a latent, arbitrarily rich structure. As more people are seen, and more details about the individual differences are revealed, the number of inferred groups is allowed to grow. We use the Dirichlet process-a distribution widely used in nonparametric Bayesian statistics-to define a prior for the model, allowing us to learn flexible parameter distributions without overfitting the data, or requiring the complex cornputations typically required for determining the dimensionality of a model. As an initial demonstration of the approach, we present three applications that analyze the individual differences in category learning, choice of publication Outlets, and web-browsing behavior. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 122
页数:22
相关论文
共 50 条
  • [1] SPATIAL JOINT SPECIES DISTRIBUTION MODELING USING DIRICHLET PROCESSES
    Shirota, Shinichiro
    Gelfand, Alan E.
    Banerjee, Sudipto
    [J]. STATISTICA SINICA, 2019, 29 (03) : 1127 - 1154
  • [2] Modeling individual differences in perceptual and attentional processes related to bulimic symptoms
    Viken, RJ
    Treat, TA
    Nosofsky, RM
    McFall, RM
    Palmeri, TJ
    [J]. JOURNAL OF ABNORMAL PSYCHOLOGY, 2002, 111 (04) : 598 - 609
  • [3] Joint Species Distribution Modeling: Dimension Reduction Using Dirichlet Processes
    Taylor-Rodriguez, Daniel
    Kaufeld, Kimberly
    Schliep, Erin M.
    Clark, James S.
    Gelfand, Alan E.
    [J]. BAYESIAN ANALYSIS, 2017, 12 (04): : 939 - 967
  • [4] Video Data Modeling Using Sequential Correspondence Hierarchical Dirichlet Processes
    Xue, Jianfei
    Eguchi, Koji
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (01): : 33 - 41
  • [5] MODELING INDIVIDUAL DIFFERENCES AMONG WRITERS USING READERBENCH
    Allen, Laura K.
    Dascalu, Mihai
    McNamara, Danielle S.
    Crossley, Scott A.
    Trausan-Matu, Stefan
    [J]. EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2016, : 5269 - 5279
  • [6] PERSONALITY PROCESSES AND INDIVIDUAL DIFFERENCES
    King, Laura A.
    [J]. JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 2010, 98 (01) : 104 - 105
  • [7] Personality processes and individual differences
    Carver, CS
    [J]. JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 2004, 86 (01) : 95 - 95
  • [8] Neural Embedded Dirichlet Processes for Topic Modeling
    Palencia-Olivar, Miguel
    Bonnevay, Stephane
    Aussem, Alexandre
    Canitia, Bruno
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2021), 2021, 12898 : 299 - 310
  • [9] Modeling individual differences in cognition
    Michael D. Lee
    Michael R. Webb
    [J]. Psychonomic Bulletin & Review, 2005, 12 : 605 - 621
  • [10] Modeling individual differences in cognition
    Lee, MD
    Webb, MR
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2005, 12 (04) : 605 - 621