Non-Parametric Subject Prediction

被引:0
|
作者
Wang, Shenghui [1 ]
Koopman, Rob [1 ]
Englebienne, Gwenn [2 ]
机构
[1] OCLC Res, Schipholweg 99, NL-2316 XA Leiden, Netherlands
[2] Univ Twente, Hallenweg 19, NL-7522 NH Enschede, Netherlands
关键词
Random projection; Subject prediction; Non-parametric method; Semantic embedding;
D O I
10.1007/978-3-030-30760-8_27
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Automatic subject prediction is a desirable feature for modern digital library systems, as manual indexing can no longer cope with the rapid growth of digital collections. This is an "extreme multi-label classification" problem, where the objective is to assign a small subset of the most relevant subjects from an extremely large label set. Data sparsity and model scalability are the major challenges we need to address to solve it automatically. In this paper, we describe an efficient and effective embedding method that embeds terms, subjects and documents into the same semantic space, where similarity can be computed easily. We then propose a novel Non-Parametric Subject Prediction (NPSP) method and show how effectively it predicts even very specialised subjects, which are associated with few documents in the training set and are not predicted by state-of-the-art classifiers.
引用
收藏
页码:312 / 326
页数:15
相关论文
共 50 条
  • [1] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    [J]. BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [2] A non-parametric approach to software reliability prediction
    Barghout, M
    Littlewood, B
    AbdelGhaly, A
    [J]. EIGHTH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS, 1997, : 366 - 377
  • [3] On the Non-parametric Prediction of Conditionally Stationary Sequences
    S. Caires
    J. A. Ferreira
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (2) : 151 - 184
  • [4] Comparison of Parametric and Non-Parametric Approaches for Vehicle Speed Prediction
    Lefevre, Stephanie
    Sun, Chao
    Bajcsy, Ruzena
    Laugier, Christian
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3494 - 3499
  • [5] ON THE NON-PARAMETRIC PREDICTION OF ALEATORY VARIABLES AND MEASUREMENTS
    BOSQ, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (04): : 541 - 553
  • [6] Prediction of site factors by a non-parametric approach
    Perus, Iztok
    Fajfar, Peter
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2014, 43 (12): : 1743 - 1761
  • [7] Non-Parametric Prediction in a Limit Order Book
    Palguna, Deepan
    Pollak, Ilya
    [J]. 2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 1139 - 1139
  • [8] A non-parametric non-stationary procedure for failure prediction
    Pfefferman, JD
    Cemuschi-Frías, B
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2002, 51 (04) : 434 - 442
  • [9] Software Reliability Prediction Modeling: A Comparison of Parametric and Non-Parametric Modeling
    Choudhary, Ankur
    Baghel, Anurag Singh
    Sangwan, Om Prakash
    [J]. 2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), 2016, : 649 - 653
  • [10] A Robust and Non-parametric Model for Prediction of Dengue Incidence
    Atlanta Chakraborty
    Vijay Chandru
    [J]. Journal of the Indian Institute of Science, 2020, 100 : 893 - 899