Machine Learning for Cloud Detection of Globally Distributed Sentinel-2 Images

被引:21
|
作者
Cilli, Roberto [1 ]
Monaco, Alfonso [2 ]
Amoroso, Nicola [2 ,3 ]
Tateo, Andrea [1 ]
Tangaro, Sabina [2 ,4 ]
Bellotti, Roberto [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, I-70121 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70121 Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, I-70121 Bari, Italy
[4] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, I-70121 Bari, Italy
关键词
Sentinel-2; cloud segmentation; machine learning; SVM; MAJA; FMask; Sen2Cor; AUTOMATED CLOUD; SNOW DETECTION; LANDSAT DATA; SHADOW; COVER; CLASSIFICATION; IDENTIFICATION; MASK;
D O I
10.3390/rs12152355
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, a number of different procedures have been proposed for segmentation of remote sensing images, basing on spectral information. Model-based and machine learning strategies have been investigated in several studies. This work presents a comprehensive overview and an unbiased comparison of the most adopted segmentation strategies: Support Vector Machines (SVM), Random Forests, Neural networks, Sen2Cor, FMask and MAJA. We used a training set for learning and two different independent sets for testing. The comparison accounted for 135 images acquired from 54 different worldwide sites. We observed that machine learning segmentations are extremely reliable when the training and test are homogeneous. SVM performed slightly better than other methods. In particular, when using heterogeneous test data, SVM remained the most accurate segmentation method while state-of-the-art model-based methods such as MAJA and FMask obtained better sensitivity and precision, respectively. Therefore, even if each method has its specific advantages and drawbacks, SVM resulted in a competitive option for remote sensing applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Benchmarking Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images
    Lopez-Puigdollers, Dan
    Mateo-Garcia, Gonzalo
    Gomez-Chova, Luis
    [J]. REMOTE SENSING, 2021, 13 (05) : 1 - 20
  • [2] MACHINE LEARNING AND FEATURE EXTRACTION FOR INDUSTRIAL SMOKE PLUMES DETECTION FROM SENTINEL-2 IMAGES
    Poucin, Florentin
    Ouerghi, Elyes
    Lajouanie, Simon
    Rodrigues, Hugo de Almeida
    Facciolo, Gabriele
    de Franchis, Carlo
    Hessel, Charles
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6113 - 6116
  • [3] Siamese Networks with Transfer Learning for Change Detection in Sentinel-2 Images
    Andresini, Giuseppina
    Appice, Annalisa
    Dell'Olio, Domenico
    Malerba, Donato
    [J]. AIXIA 2021 - ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13196 : 478 - 489
  • [4] Unsupervised deep learning based change detection in Sentinel-2 images
    Saha, Sudipan
    Solano-Correa, Yady Tatiana
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. 2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [5] Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network
    Lanaras, Charis
    Bioucas-Dias, Jose
    Galliani, Silvano
    Baltsavias, Emmanuel
    Schindler, Konrad
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 : 305 - 319
  • [6] Burned Area Classification Based on Extreme Learning Machine and Sentinel-2 Images
    Gajardo, John
    Mora, Marco
    Valdes-Nicolao, Guillermo
    Carrasco-Benavides, Marcos
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [7] Turbidity classification of the Paraopeba River using machine learning and Sentinel-2 images
    Batista, Leonardo Vidal
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (05) : 799 - 805
  • [8] A novel spectro-temporal index NDTeI combined with machine learning algorithm for Sentinel-2 cloud detection
    Ai, Xinkai
    Xie, Shuai
    Sun, Lin
    Liu, Liangyun
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (12) : 4023 - 4045
  • [9] Comparison of Cloud Cover Detection Algorithms on Sentinel-2 Images of the Amazon Tropical Forest
    Sanchez, Alber Hamersson
    Picoli, Michelle Cristina A.
    Camara, Gilberto
    Andrade, Pedro R.
    Chaves, Michel Eustaquio D.
    Lechler, Sarah
    Soares, Anderson R.
    Marujo, Rennan E. B.
    Simbes, Rolf Ezequiel O.
    Ferreira, Karine R.
    Queiroz, Gilberto R.
    [J]. REMOTE SENSING, 2020, 12 (08)
  • [10] Comparison of cloud detection algorithms for Sentinel-2 imagery
    Tarrio, Katelyn
    Tang, Xiaojing
    Masek, Jeffrey G.
    Claverie, Martin
    Ju, Junchang
    Qiu, Shi
    Zhu, Zhe
    Woodcock, Curtis E.
    [J]. SCIENCE OF REMOTE SENSING, 2020, 2