Semiclassical solutions of perturbed p-Laplacian equations with critical nonlinearity

被引:17
|
作者
Lin, Xiaoyan [1 ]
Tang, X. H. [2 ]
机构
[1] Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
Perturbed p-Laplacian equation; Semiclassical solution; Sobolev critical exponent; LINEAR SCHRODINGER-EQUATION; BOUND-STATES; EXISTENCE; MULTIPLICITY;
D O I
10.1016/j.jmaa.2013.11.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the perturbed p-Laplacian equation -epsilon(p)Delta(p)u + V(x) vertical bar u vertical bar(p-2)u = K(x) vertical bar u vertical bar(p)*(-2)u + f (x, u), u is an element of W-1,W-p (R-N), where Delta(p)u := div(vertical bar del u vertical bar(p-2)del u) is the p-Laplacian operator with 1 < p < N, p* = pN/(N - p) denotes the Sobolev critical exponent, K(x) is a bounded positive function. Under some mild conditions on V and f we show that the equation has at least one nontrivial solution provided that epsilon < epsilon(0), where the bound so is formulated in terms of p, N, V, K and f. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 449
页数:12
相关论文
共 50 条