Item Recommendation by Query-Based Biclustering Method

被引:0
|
作者
Yokoyama, Naoya [1 ]
Okada, Yoshihumi [2 ]
机构
[1] Muroran Inst Technol, Dept Informat & Elect Engn, 27-1 Mizumoto Cho, Muroran, Hokkaido 0508585, Japan
[2] Muroran Inst Technol, Coll Informat & Syst, Muroran, Hokkaido 0508585, Japan
关键词
D O I
10.1007/978-3-319-02821-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new recommender system that explores useful items by a biclustering method based on user's query. The advantage of our method is that the computational time can be reduced because the search space of biclusters is restricted to the transactions (users) which rate items within a query. In this study, the performance of our method is compared to that of a previous method that executes biclustering for entire transaction database. As a result, it is shown that our method enables item recommendation with higher accuracy at a considerably lower computational cost than the previous method.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] QUBIC: An adaptive approach to query-based recommendation
    Li, Lin
    Zhong, Luo
    Yang, Zhenglu
    Kitsuregawa, Masaru
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2013, 40 (03) : 555 - 587
  • [2] QUBiC: An adaptive approach to query-based recommendation
    Lin Li
    Luo Zhong
    Zhenglu Yang
    Masaru Kitsuregawa
    [J]. Journal of Intelligent Information Systems, 2013, 40 : 555 - 587
  • [3] Dual Sequence Transformer for Query-based Interactive Recommendation
    Cai, Guohao
    Li, Xiaoguang
    Dai, Quanyu
    Wang, Gang
    Dong, Zhenhua
    Zhang, Chaoliang
    He, Xiuqiang
    Shang, Lifeng
    [J]. 2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 139 - 144
  • [4] Query-based biclustering of gene expression data using Probabilistic Relational Models
    Hui Zhao
    Lore Cloots
    Tim Van den Bulcke
    Yan Wu
    Riet De Smet
    Valerie Storms
    Pieter Meysman
    Kristof Engelen
    Kathleen Marchal
    [J]. BMC Bioinformatics, 12
  • [5] Query-based biclustering of gene expression data using Probabilistic Relational Models
    Zhao, Hui
    Cloots, Lore
    Van den Bulcke, Tim
    Wu, Yan
    De Smet, Riet
    Storms, Valerie
    Meysman, Pieter
    Engelen, Kristof
    Marchal, Kathleen
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [6] Query-Based Recommendation by HIN Embedding with PRE-LSTM
    Liu, Zhuo-Ming
    Hui, Yu-Miao
    Huang, Ling
    [J]. ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 : 515 - 529
  • [7] Query-based HMM training method for ASR
    Kyung, Y
    Jung, J
    Moon, S
    [J]. ELECTRONICS LETTERS, 2003, 39 (16) : 1222 - 1223
  • [8] Query as Context for Item-to-Item Recommendation
    Bhattacharya, Moumita
    Barapatre, Amey
    [J]. RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 575 - 576
  • [9] Context Sensitive Query Correction Method for Query-Based Text Summarization
    Rahman, Nazreena
    Borah, Bhogeswar
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT VI, 2017, 10409 : 17 - 30
  • [10] A query-based quantum eigensolver
    Jin, Shan
    Wu, Shaojun
    Zhou, Guanyu
    Li, Ying
    Li, Lvzhou
    Li, Bo
    Wang, Xiaoting
    [J]. Quantum Engineering, 2020, 2 (03)