Positive Solutions for Some Competitive Fractional Systems in Bounded Domains

被引:0
|
作者
Bachar, Imed [1 ]
Maagli, Habib [2 ]
Zeddini, Noureddine [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh 21911, Saudi Arabia
关键词
EXISTENCE;
D O I
10.1155/2013/140130
中图分类号
学科分类号
摘要
Using some potential theory tools and the Schauder fixed point theorem, we prove the existence and precise global behavior of positive continuous solutions for the competitive fractional system (-Delta(vertical bar D))(alpha/2)u + p(x)u(sigma)v(r) = 0, (-Delta(vertical bar D))(alpha/2)v + q(x)u(s)v(beta) = 0 in a bounded C-1,C-1-domain D in R-n (n >= 3), subject to some Dirichlet conditions, where 0 < alpha < 2, sigma, beta >= 1, s, r >= 0. The potential functions p,q are nonnegative and required to satisfy some adequate hypotheses related to the Kato class of functions K-alpha(D).
引用
收藏
页数:6
相关论文
共 50 条
  • [11] EXISTENCE OF POSITIVE BOUNDED SOLUTIONS FOR SOME NONLINEAR POLYHARMONIC ELLIPTIC SYSTEMS
    Gontara, Sabrine
    El Abidine, Zagharide Zine
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [12] Existence of positive solutions for some nonlinear parabolic systems in exteriors domains
    Ben Dkhil, A.
    Zeddini, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 363 - 371
  • [13] Positive radial solutions for some quasilinear elliptic systems in exterior domains
    do O, JM
    Lorca, S
    Sánchez, J
    Ubilla, P
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (03) : 571 - 581
  • [15] Positive bounded solutions for semilinear elliptic equations in smooth domains
    Bachar, Imed
    Maagli, Habib
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 707 - 714
  • [16] Fractional Diffusion on Bounded Domains
    Ozlem Defterli
    Marta D’Elia
    Qiang Du
    Max Gunzburger
    Rich Lehoucq
    Mark M. Meerschaert
    Fractional Calculus and Applied Analysis, 2015, 18 : 342 - 360
  • [17] On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains
    Souissi, Chouhaid
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 231 - 253
  • [18] FRACTIONAL DIFFUSION ON BOUNDED DOMAINS
    Defterli, Ozlem
    D'Elia, Marta
    Du, Qiang
    Gunzburger, Max
    Lehoucq, Rich
    Meerschaert, Mark M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (02) : 342 - 360
  • [19] Continuous-time Fractional Bounded Positive Systems
    Hmamed, A.
    Mesquine, F.
    Benzaouia, A.
    Benhayoun, M.
    Tadeo, F.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2127 - 2132
  • [20] On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains
    Chouhaïd Souissi
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 231 - 253