Improvement of the parameter measurement accuracy by the third-generation gravitational wave detector Einstein Telescope

被引:5
|
作者
Cho, Hee-Suk [1 ,2 ]
机构
[1] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea
[2] Pusan Natl Univ, Extreme Phys Inst, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
gravitational waves; parameter estimation; binary black holes; binary neutron stars; Einstein Telescope; COMPACT BINARIES;
D O I
10.1088/1361-6382/ac5b31
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Einstein Telescope (ET) has been proposed as one of the third-generation gravitational wave (GW) detectors. The sensitivity of ET would be a factor of 10 better than the second-generation GW detector, advanced LIGO (aLIGO); thus, the GW source parameters could be measured with much better accuracy. In this work, we show how the precision in parameter estimation can be improved between aLIGO and ET by comparing the measurement errors. We apply the TaylorF2 waveform model defined in the frequency domain to the Fisher matrix method which is a semi-analytic approach for estimating GW parameter measurement errors. We adopt as our sources low-mass binary black holes with the total masses of M <= 16M (circle dot) and the effective spins of -0.9 <= chi (eff) <= 0.9 and calculate the measurement errors of the mass and the spin parameters using 10(4) Monte-Carlo samples randomly distributed in our mass and spin parameter space. We find that for the same sources ET can achieve similar to 14 <i times better signal-to-noise ratio than aLIGO and the error ratios (sigma (lambda,ET)/sigma (lambda,aLIGO)) for the chirp-mass, symmetric mass ratio, and effective spin parameters can be lower than 7% for all binaries. We also consider the equal-mass binary neutron stars with the component masses of 1, 1.4, and 2M (circle dot) and find that the error ratios for the mass and the spin parameters can be lower than 1.5%. In particular, the measurement error of the tidal deformability <i can also be significantly reduced by ET, with the error ratio of 3.6%-6.1%. We investigate the effect of prior information by applying the Gaussian prior on the coalescence phase phi (c) to the Fisher matrix and find that the error of the intrinsic parameters can be reduced to similar to 70% (sigma lambda priorless) sigma(priorless)(phi c).
引用
收藏
页数:24
相关论文
共 50 条
  • [1] The Einstein Telescope: a third-generation gravitational wave observatory
    Punturo, M.
    Abernathy, M.
    Acernese, F.
    Allen, B.
    Andersson, N.
    Arun, K.
    Barone, F.
    Barr, B.
    Barsuglia, M.
    Beker, M.
    Beveridge, N.
    Birindelli, S.
    Bose, S.
    Bosi, L.
    Braccini, S.
    Bradaschia, C.
    Bulik, T.
    Calloni, E.
    Cella, G.
    Mottin, E. Chassande
    Chelkowski, S.
    Chincarini, A.
    Clark, J.
    Coccia, E.
    Colacino, C.
    Colas, J.
    Cumming, A.
    Cunningham, L.
    Cuoco, E.
    Danilishin, S.
    Danzmann, K.
    De Luca, G.
    De Salvo, R.
    Dent, T.
    De Rosa, R.
    Di Fiore, L.
    Di Virgilio, A.
    Doets, M.
    Fafone, V.
    Falferi, P.
    Flaminio, R.
    Franc, J.
    Frasconi, F.
    Freise, A.
    Fulda, P.
    Gair, J.
    Gemme, G.
    Gennai, A.
    Giazotto, A.
    Glampedakis, K.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (19)
  • [2] A xylophone configuration for a third-generation gravitational wave detector
    Hild, S.
    Chelkowski, S.
    Freise, A.
    Franc, J.
    Morgado, N.
    Flaminio, R.
    DeSalvo, R.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (01)
  • [3] Optical detector topology for third-generation gravitational wave observatories
    Freise, Andreas
    Hild, Stefan
    Somiya, Kentaro
    Strain, Ken A.
    Vicere, Andrea
    Barsuglia, Matteo
    Chelkowski, Simon
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (02) : 537 - 567
  • [4] A Sagnac interferometer as a gravitational-wave third-generation detector
    Voronchev, N. V.
    Danilishin, Sh. L.
    Khalili, F. Ya.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2014, 69 (06) : 519 - 528
  • [5] Optical detector topology for third-generation gravitational wave observatories
    Andreas Freise
    Stefan Hild
    Kentaro Somiya
    Ken A. Strain
    Andrea Viceré
    Matteo Barsuglia
    Simon Chelkowski
    General Relativity and Gravitation, 2011, 43 : 537 - 567
  • [6] A Sagnac interferometer as a gravitational-wave third-generation detector
    N. V. Voronchev
    Sh. L. Danilishin
    F. Ya. Khalili
    Moscow University Physics Bulletin, 2014, 69 : 519 - 528
  • [7] Triple Michelson interferometer for a third-generation gravitational wave detector
    Freise, A.
    Chelkowski, S.
    Hild, S.
    Del Pozzo, W.
    Perreca, A.
    Vecchio, A.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (08)
  • [8] Biases in parameter estimation from overlapping gravitational-wave signals in the third-generation detector era
    Samajdar, Anuradha
    Janquart, Justin
    Van Den Broeck, Chris
    Dietrich, Tim
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [9] Constraints on compact dark matter from lensing of gravitational waves for the third-generation gravitational wave detector
    Zhou, Huan
    Li, Zhengxiang
    Liao, Kai
    Huang, Zhiqi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 518 (01) : 149 - 156
  • [10] Research Facilities for Europe's Next Generation Gravitational-Wave Detector Einstein Telescope
    Di Pace, Sibilla
    Mangano, Valentina
    Pierini, Lorenzo
    Rezaei, Amirsajjad
    Hennig, Jan-Simon
    Hennig, Margot
    Pascucci, Daniela
    Allocca, Annalisa
    Melo, Iara Tosta e
    Nair, Vishnu G.
    Orban, Philippe
    Sider, Ameer
    Shani-Kadmiel, Shahar
    van Heijningen, Joris
    GALAXIES, 2022, 10 (03):