First passages in bounded domains: When is the mean first passage time meaningful?

被引:121
|
作者
Mattos, Thiago G. [1 ]
Mejia-Monasterio, Carlos [2 ,3 ]
Metzler, Ralf [4 ,5 ]
Oshanin, Gleb [6 ]
机构
[1] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[2] Tech Univ Madrid, Lab Phys Properties, Madrid 28040, Spain
[3] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Tampere Univ Technol, Dept Phys, FIN-33101 Tampere, Finland
[6] Univ Paris 06, Lab Phys Theor Matiere Condensee UMR CNRS 7600, F-75252 Paris, France
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 03期
基金
芬兰科学院;
关键词
RANDOM-WALK; BROWNIAN-MOTION; NARROW ESCAPE; KINETICS; DIFFUSION; STRATEGIES; GEOMETRY; BEHAVIOR; SYSTEMS; NEURON;
D O I
10.1103/PhysRevE.86.031143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(omega) distribution of the random variable omega = tau(1)/(tau(1) + tau(2)), which is a measure for how similar the first passage times tau(1) and tau(2) are of two independent realizations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(omega) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behavior. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behavior, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(omega), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behavior even in bounded domains, in which all moments of the first passage distribution exist.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Universal Formula for the Mean First Passage Time in Planar Domains
    Grebenkov, Denis S.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (26)
  • [2] Mean first-passage time of cell migration in confined domains
    Serrano, Helia
    Alvarez-Estrada, Ramon F.
    Calvo, Gabriel F.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7435 - 7453
  • [3] Mean First-Passage Time of Surface-Mediated Diffusion in Spherical Domains
    Benichou, O.
    Grebenkov, D. S.
    Levitz, P. E.
    Loverdo, C.
    Voituriez, R.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (04) : 657 - 685
  • [4] Global optimisation of the mean first passage time for narrow capture problems in elliptic domains
    Gilbert, Jason
    Cheviakov, Alexei
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2023, 34 (06) : 1269 - 1287
  • [5] Mean First-Passage Time of Surface-Mediated Diffusion in Spherical Domains
    O. Bénichou
    D. S. Grebenkov
    P. E. Levitz
    C. Loverdo
    R. Voituriez
    [J]. Journal of Statistical Physics, 2011, 142 : 657 - 685
  • [6] Mean first passage time for anomalous diffusion
    Gitterman, M
    [J]. PHYSICAL REVIEW E, 2000, 62 (05): : 6065 - 6070
  • [7] Mean first passage time in periodic attractors
    Priel, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (27): : 8603 - 8612
  • [8] First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time
    Aljaž Godec
    Ralf Metzler
    [J]. Scientific Reports, 6
  • [9] First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time
    Godec, Aljaz
    Metzler, Ralf
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Exact expressions of mean first-passage times and splitting probabilities for random walks in bounded rectangular domains
    Condamin, S.
    Benichou, O.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):