Investigations into the influence of internal and external exhaust gas recirculation on the combustion stability in an optical gasoline spark ignition engine

被引:9
|
作者
Xie, Hui [1 ]
Xu, Kang [1 ]
Wan, Minggang [1 ]
Chen, Tao [1 ]
Zhao, Hua [1 ,2 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[2] Brunel Univ, Ctr Adv Powertrain & Fuels, Uxbridge UB8 3PH, Middx, England
关键词
Internal exhaust gas recirculation; external exhaust gas recirculation; early flame development; combustion stability; optical engine; FLAME DEVELOPMENT; FUEL RATIO; HCCI; PHOTOGRAPHS;
D O I
10.1177/0954407014565800
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Combustion stability is the major concern for engines operated in highly diluted conditions, particularly during the mode transition between controlled autoignition and spark ignition. In this research, studies were performed to investigate the influence of the dilution of internal exhaust gas recirculation and the dilution of external exhaust gas recirculation on early flame development and combustion stability in a single-cylinder optical engine. It is found that a higher external exhaust gas recirculation rate slows down the early flame development, which is responsible for the higher cyclic fluctuation of combustion. The cyclic variation in the normalized flame area matches well the coefficient of variation of the early flame development period, which decreases with development of the flame. The dilution of the internal exhaust gas recirculation shows a more complicated influence on the combustion than the dilution of the external exhaust gas recirculation does. Although more hot residual gas is trapped in the cylinder, the increase in the internal exhaust gas recirculation rate does not contribute to the promotion of the in-cylinder thermal state in the studied cases. However, with a moderate increase in the internal exhaust gas recirculation rate from 9.8% to 13%, faster initial flame kernel formation is observed, which benefits the combustion by accelerating the early flame development, advancing the combustion timing and stabilizing the combustion. With the internal exhaust gas recirculation rate further increased to 19.6%, a sharp decrease in the mean expansion speed of the flame front results in a retarded early flame development and a slower heat release, which leads to severe deterioration in the combustion stability. In addition, by substituting part of the external exhaust gas recirculation with internal exhaust gas recirculation, an advanced combustion timing, a shorter combustion duration and an improved combustion stability can be achieved; this implies that a higher total exhaust gas recirculation tolerance can be achieved with the same limitation of the coefficient of variation in the indicated mean effective pressure. This result can be instructive in optimizing the control strategy of the valve timing and the external exhaust gas recirculation rate during the mode transition between controlled autoignition and spark ignition.
引用
收藏
页码:1514 / 1528
页数:15
相关论文
共 50 条
  • [1] Effects of Exhaust Gas Recirculation on Knock Intensity of a Downsized Gasoline Spark Ignition Engine
    Pan, Mingzhang
    Wei, Haiqiao
    Feng, Dengquan
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (01):
  • [2] The effect of exhaust gas recirculation (EGR) on combustion stability, engine performance and exhaust emissions in a gasoline engine
    Cha, J
    Kwon, J
    Cho, Y
    Park, S
    [J]. KSME INTERNATIONAL JOURNAL, 2001, 15 (10): : 1442 - 1450
  • [3] The effect of exhaust gas recirculation (EGR) on combustion stability, engine performance and exhaust emissions in a gasoline engine
    Jinyoung Cha
    Junhong Kwon
    Youngjin Cho
    Simsoo Park
    [J]. KSME International Journal, 2001, 15 : 1442 - 1450
  • [4] Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions
    Zhou, Lei
    Hua, Jianxiong
    Liu, Feng
    Liu, Fengnian
    Feng, Dengquan
    Wei, Haiqiao
    [J]. ENERGY, 2018, 164 : 306 - 315
  • [5] INFLUENCE OF EXHAUST GAS RECIRCULATION ON NOX EMISSIONS OF A HYDROGEN FUELED SPARK IGNITION ENGINE
    Soehnlein, Sebastian Oswald
    Judith, Joern Alexander
    Taschek, Marco
    Hammer, Moritz
    Kettner, Maurice
    [J]. PROCEEDINGS OF ASME 2022 ICE FORWARD CONFERENCE, ICEF2022, 2022,
  • [6] Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine
    Khoa, Nguyen Xuan
    Nhu, Y. Quach
    Lim, Ocktaeck
    [J]. APPLIED ENERGY, 2020, 278
  • [7] Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation
    Pan, Mingzhang
    Shu, Gequn
    Pan, Jiaying
    Wei, Haiqiao
    Feng, Dengquan
    Guo, Yubin
    Liang, Youcai
    [J]. FUEL, 2014, 132 : 36 - 43
  • [8] Effects of internal exhaust gas recirculation on controlled auto-ignition in a methane engine combustion
    Cho, Gyubaek
    Moon, Gunfeel
    Jeong, Dongsoo
    Bae, Choongsik
    [J]. FUEL, 2009, 88 (06) : 1042 - 1048
  • [9] Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation
    Zhang, Zhijin
    Wang, Tianyou
    Jia, Ming
    Wei, Qun
    Meng, Xiangzan
    Shu, Gequn
    [J]. FUEL, 2014, 130 : 177 - 188
  • [10] Investigation of Gasoline Partially Premixed Combustion with External Exhaust Gas Recirculation
    Ravaglioli, Vittorio
    Ponti, Fabrizio
    Silvagni, Giacomo
    Moro, Davide
    Stola, Federico
    De Cesare, Matteo
    [J]. SAE INTERNATIONAL JOURNAL OF ENGINES, 2022, 15 (05) : 613 - 630