Mitochondrial NAD(P)H oxidation pathways and nitrate/ammonium redox balancing in plants

被引:21
|
作者
Rasmusson, Allan G. [1 ]
Escobar, Matthew A. [2 ]
Hao, Mengshu [1 ]
Podgorska, Anna [3 ]
Szal, Bozena [3 ]
机构
[1] Lund Univ, Dept Biol, Solvegatan 35B, S-22362 Lund, Sweden
[2] Calif State Univ San Marcos, 333 S Twin Oaks Valley Rd, San Marcos, CA 92096 USA
[3] Univ Warsaw, Fac Biol, Inst Expt Plant Biol & Biotechnol, Ilii Miecznikowa 1, PL-02096 Warsaw, Poland
关键词
Ammonium; Apoplast; Cell wall; Mitochondrial electron transport; Nitrate; Oxidative stress; Reactive oxygen species; ELECTRON-TRANSPORT CHAIN; EXTERNAL NADPH DEHYDROGENASE; ALTERNATIVE OXIDASE; COMPLEX-I; RESPIRATORY-CHAIN; CHLAMYDOMONAS-REINHARDTII; NITRATE ASSIMILATION; PYRIDINE-NUCLEOTIDES; AMMONIUM NUTRITION; CARBON METABOLISM;
D O I
10.1016/j.mito.2020.05.010
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO3-) and/or reduced ammonium (NH4+). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 50 条
  • [1] Biphasic oxidation of mitochondrial NAD(P)H
    Lemeshko, VV
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 291 (01) : 170 - 175
  • [2] The redox process of nimesulide and its metabolite in NAD(P)H oxidation.
    Andreu, GP
    Yamamoto, ETS
    Curti, C
    Naal, Z
    AFINIDAD, 2004, 61 (514) : 496 - 499
  • [3] Nuclear DNA damage during NAD(P)H oxidation by membrane redox chains
    Peskin, AV
    FREE RADICAL BIOLOGY AND MEDICINE, 1996, 20 (03) : 313 - 318
  • [4] Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state
    Lambert, Adrian J.
    Buckingham, Julie A.
    Brand, Martin D.
    FEBS LETTERS, 2008, 582 (12) : 1711 - 1714
  • [5] Modulation of vascular NAD(P)H fluorescence by contraction, mitochondrial probes and glutathione oxidation
    Gao, Q
    Kaminski, P
    Iesaki, T
    Wolin, MS
    FASEB JOURNAL, 2004, 18 (04): : A284 - A284
  • [6] EFFECTS OF A NITRATE REDUCTASE INACTIVATING ENZYME AND NAD(P)H ON NITRATE REDUCTASE FROM HIGHER-PLANTS AND NEUROSPORA
    WALLACE, W
    BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 377 (02) : 239 - 250
  • [7] A Pathway for Repair of NAD(P) H in Plants
    Colinas, Maite
    Shaw, Holly V.
    Loubery, Sylvain
    Kaufmann, Markus
    Moulin, Michael
    Fitzpatrick, Teresa B.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (21) : 14692 - 14706
  • [8] SOYBEAN NAD(P)H: AND NADH: NITRATE REDUCTASES
    Robin, Paul
    Campbell, W.
    PLANT PHYSIOLOGY, 1984, 75 : 10 - 10
  • [9] NAD(P)+-NAD(P)H models.: 89.: Effect of magnesium ion on the stereochemistry in oxidation of NAD(P)H analog
    Ohno, A
    Oda, S
    Yamazaki, N
    TETRAHEDRON LETTERS, 1999, 40 (24) : 4577 - 4580
  • [10] MITOCHONDRIAL NAD(P)H-OXIDIZING ENZYMES
    LEE, CP
    CHEMICA SCRIPTA, 1987, 27A : 21 - 26