Isochronicity and linearizability of a planar cubic system

被引:6
|
作者
Fernandes, Wilker [1 ]
Romanovski, Valery G. [2 ,3 ]
Sultanova, Marzhan [4 ]
Tang, Yilei [2 ,5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Maribor, Ctr Appl Math & Theoret Phys, Krekova 2, SI-2000 Maribor, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Koroska C 160, SI-2000 Maribor, Slovenia
[4] Al Farabi Kazakh Natl Univ, Fac Mech & Math, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[5] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Linearizability; Isochronicity; Darboux linearization; Coexistence of centers; Cubic differential systems; HOMOGENEOUS POLYNOMIALS; DIFFERENTIAL-SYSTEMS; CENTERS; FAMILY;
D O I
10.1016/j.jmaa.2017.01.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of linearizability for a family of cubic complex planar systems of ordinary differential equations. We give a classification of linearizable systems in the family obtaining conditions for linearizability in terms of parameters. We also discuss coexistence of isochronous centers in the systems. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:795 / 813
页数:19
相关论文
共 50 条
  • [1] Isochronicity and linearizability of planar polynomial Hamiltonian systems
    Llibre, Jaume
    Romanovski, Valery G.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1649 - 1662
  • [2] Isochronicity for a -equivariant cubic system
    Du, Chaoxiong
    Liu, Yirong
    [J]. NONLINEAR DYNAMICS, 2017, 87 (02) : 1235 - 1252
  • [3] Linearizability conditions for a cubic system
    Dolicanin, Diana
    Milovanovic, Gradimir V.
    Romanovski, Valery G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 937 - 945
  • [4] Recursion Formulas in Determining Isochronicity of a Cubic Reversible System
    Liao, Zhiwu
    Hu, Shaoxiang
    Hou, Xianling
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT IV, 2011, 6785 : 619 - 632
  • [5] Linearizability conditions for Lotka-Volterra planar complex cubic systems
    Gine, Jaume
    Romanovski, Valery G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)
  • [6] Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system
    Chen, Xingwu
    Huang, Wentao
    Romanovski, Valery G.
    Zhang, Weinian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 245 : 86 - 96
  • [7] Linearizability of three families of cubic systems
    Romanvski, VG
    Wu, YH
    Christopher, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (09): : L145 - L152
  • [8] The centre and isochronicity problems for some cubic systems
    Romanovski, VG
    Robnik, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10267 - 10292
  • [9] Linearizability of planar polynomial Hamiltonian systems
    Arcet, Barbara
    Gine, Jaume
    Romanovski, Valery G.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 63
  • [10] Isochronicity conditions for some planar polynomial systems
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 89 - 112