Convergence of the solutions of the discounted equation: the discrete case

被引:16
|
作者
Davini, Andrea [1 ]
Fathi, Albert [2 ,3 ]
Iturriaga, Renato [4 ]
Zavidovique, Maxime [5 ]
机构
[1] Sapienza Univ Roma, Dip Matemat, Ple Aldo Moro 2, I-00185 Rome, Italy
[2] ENS Lyon, UMPA, 46 Allee Italie, F-69364 Lyon 7, France
[3] IUF, 46 Allee Italie, F-69364 Lyon 7, France
[4] Cimat, Guanajuato 36000, Mexico
[5] UPMC, IMJ PRG Projet Anal Algebr, 4 Pl Jussieu,Case 247, F-75252 Paris 5, France
关键词
Cost Function; Comparison Principle; Discrete Version; Jacobi Equation; Discrete Case;
D O I
10.1007/s00209-016-1685-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton-Jacobi equation. Invent Math, 2016). If M is a compact metric space, a continuous cost function and , the unique solution to the discrete -discounted equation is the only function such that We prove that there exists a unique constant such that the family of is bounded as and that for this , the family uniformly converges to a function which then verifies The proofs make use of Discrete Weak KAM theory. We also characterize in terms of Peierls barrier and projected Mather measures.
引用
收藏
页码:1021 / 1034
页数:14
相关论文
共 50 条
  • [1] Convergence of the solutions of the discounted equation: the discrete case
    Andrea Davini
    Albert Fathi
    Renato Iturriaga
    Maxime Zavidovique
    Mathematische Zeitschrift, 2016, 284 : 1021 - 1034
  • [2] Convergence of the solutions of the discounted Hamilton-Jacobi equation
    Davini, Andrea
    Fathi, Albert
    Iturriaga, Renato
    Zavidovique, Maxime
    INVENTIONES MATHEMATICAE, 2016, 206 (01) : 29 - 55
  • [3] Convergence of the solutions of the discounted Hamilton-Jacobi equation: A counterexample
    Ziliotto, Bruno
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 : 330 - 338
  • [4] Convergence of the solutions of the MFG discounted Hamilton-Jacobi equation
    Masoero, Marco
    arXiv, 2019,
  • [5] Asymptotic Convergence of the Solutions of a Discrete Equation with Two Delays in the Critical Case
    Berezansky, L.
    Diblik, J.
    Ruzickova, M.
    Suta, Z.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [6] Convergence of the solutions of the discounted Hamilton–Jacobi equationConvergence of the discounted solutions
    Andrea Davini
    Albert Fathi
    Renato Iturriaga
    Maxime Zavidovique
    Inventiones mathematicae, 2016, 206 : 29 - 55
  • [7] Strong convergence of discrete DG solutions of the heat equation
    Girault, Vivette
    Li, Jizhou
    Riviere, Beatrice
    JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (04) : 235 - 252
  • [8] Asymptotic convergence of the solutions of a discrete equation with several delays
    Diblik, J.
    Ruzickova, M.
    Suta, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5391 - 5401
  • [9] On the convergence rates of discrete solutions to the Wave Kinetic Equation
    Dolce, Michele
    Grande, Ricardo
    MATHEMATICS IN ENGINEERING, 2024, 6 (04): : 536 - 558
  • [10] Asymptotic Convergence of the Solutions of a Dynamic Equation on Discrete Time Scales
    Diblik, J.
    Ruzickova, M.
    Smarda, Z.
    Suta, Z.
    ABSTRACT AND APPLIED ANALYSIS, 2012,