Dislocation climb models from atomistic scheme to dislocation dynamics

被引:25
|
作者
Niu, Xiaohua [1 ]
Luo, Tao [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Xiang, Yang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Dislocation climb; Vacancy diffusion; Pipe diffusion; Dislocation jogs; Dislocation dynamics; SELF-DIFFUSION; ALUMINUM; CORES; GLIDE; LOOPS;
D O I
10.1016/j.jmps.2016.11.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.
引用
收藏
页码:242 / 258
页数:17
相关论文
共 50 条
  • [1] Predicting Dislocation Climb and Creep from Explicit Atomistic Details
    Kabir, Mukul
    Lau, Timothy T.
    Rodney, David
    Yip, Sidney
    Van Vliet, Krystyn J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [2] DISLOCATION CLIMB MODELS OF SUPERPLASTICITY
    ALDEN, TH
    [J]. JOURNAL OF METALS, 1969, 21 (03): : A95 - &
  • [3] Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb
    Lau, Timothy T.
    Lin, Xi
    Yip, Sidney
    Van Vliet, Krystyn J.
    [J]. SCRIPTA MATERIALIA, 2009, 60 (06) : 399 - 402
  • [4] Insights into dislocation climb efficiency in FCC metals from atomistic simulations
    Abu-Odeh, Anas
    Cottura, Maeva
    Asta, Mark
    [J]. ACTA MATERIALIA, 2020, 193 : 172 - 181
  • [5] Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics
    Mordehai, Dan
    Clouet, Emmanuel
    Fivel, Marc
    Verdier, Marc
    [J]. PHILOSOPHICAL MAGAZINE, 2008, 88 (06) : 899 - 925
  • [6] Dislocation climb in two-dimensional discrete dislocation dynamics
    Davoudi, Kamyar M.
    Nicola, Lucia
    Vlassak, Joost J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (10)
  • [7] On the consideration of climb in discrete dislocation dynamics
    Raabe, D
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1998, 77 (03): : 751 - 759
  • [8] Predicting dislocation climb: Classical modeling versus atomistic simulations
    Clouet, Emmanuel
    [J]. PHYSICAL REVIEW B, 2011, 84 (09):
  • [9] DISLOCATION CLIMB IN PRESENCE OF ANOTHER DISLOCATION
    GILRA, NK
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1973, 60 (02): : K131 - K133
  • [10] Investigations of pipe-diffusion-based dislocation climb by discrete dislocation dynamics
    Gao, Y.
    Zhuang, Z.
    Liu, Z. L.
    You, X. C.
    Zhao, X. C.
    Zhang, Z. H.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (07) : 1055 - 1071