A boundary value problem for a random-order fractional differential equation

被引:2
|
作者
Lopez-Cresencio, Omar U. [1 ]
Ariza-Hernandez, Francisco J. [1 ]
Sanchez -Ortiz, Jorge [1 ]
Arciga-Alejandre, Martin P. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Av Lazaro Cardenas S-N Cd, Chilpancingo 39087, Guerrero, Mexico
来源
关键词
Random order derivative; Fractional oscillator; Caputo derivative; Nystrom method;
D O I
10.1016/j.rinam.2022.100328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define a new Riemann-Liouville fractional integral with random order, from this Caputo and Riemann-Liouville fractional derivatives are straightforward obtained, where the fractional order of these operators is a simple random variable. We derive useful properties analogous to those of the fractional operators with constant order, such as the semigroup property. As an application, we study a boundary value problem for the fractional oscillator with random order, using a random integral equation of Fredholm type. Finally, in order to solve this problem, we adapt the Nystrom method to get a numerical solution. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条