On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method

被引:101
|
作者
Baskonus, Haci Mehmet [1 ]
Bulut, Hasan [2 ]
机构
[1] Tunceli Univ, Dept Comp Engn, Fac Engn, Tunceli, Turkey
[2] Firat Univ, Dept Math, Fac Sci, TR-23169 Elazig, Turkey
来源
OPEN MATHEMATICS | 2015年 / 13卷
关键词
Fractional Adams-Bashforth-Moulton method; Fractional calculus; Fractional nonlinear ordinary differential equation; ALGORITHMS; DIFFUSION; STABILITY; CHAOS;
D O I
10.1515/math-2015-0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L-2 nodal norm and L-infinity maximum nodal norm to evaluate the accuracy of method used in this paper.
引用
收藏
页码:547 / 556
页数:10
相关论文
共 50 条
  • [1] A variant of Adams - Bashforth - Moulton method to solve fractional ordinary differential equation
    Blasik, Marek
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 1175 - 1178
  • [2] Performance modeling of serial and parallel implementations of the fractional Adams-Bashforth-Moulton method
    Zhang, Wei
    Wei, Wenjie
    Cai, Xing
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 617 - 637
  • [3] Performance modeling of serial and parallel implementations of the fractional Adams-Bashforth-Moulton method
    Wei Zhang
    Wenjie Wei
    Xing Cai
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 617 - 637
  • [4] Solving Fuzzy Fractional Atangana-Baleanu Differential Equation Using Adams-Bashforth-Moulton Method
    Melliani, Said
    Zamtain, Fouziya
    Elomari, M'Hamed
    Chadli, Lalla Saadia
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [5] Using the generalized Adams-Bashforth-Moulton method for obtaining the numerical solution of some variable-order fractional dynamical models
    Khader, Mohamed M.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (01) : 93 - 98
  • [6] A new variant of Adams - Bashforth - Moulton method to solve sequential fractional ordinary differential equation
    Blasik, Marek
    [J]. 2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 854 - 858
  • [7] Method Adams-Bashforth-Moulton to calculate the nuclear power
    Suescun Diaz, Daniel
    Narvaez Paredes, Mauricio
    Figueroa Jimenez, Jorge Hernando
    Amador Rodriguez, Andres Felipe
    [J]. HOMBRE Y LA MAQUINA, 2013, (42-43): : 9 - 12
  • [8] On the Extension of Adams-Bashforth-Moulton Methods for Numerical Integration of Delay Differential Equations and Application to the Moon's Orbit
    Aksim, Dan
    Pavlov, Dmitry
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (01) : 103 - 109
  • [9] Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method
    Zabidi, Nur Amirah
    Majid, Zanariah Abdul
    Kilicman, Adem
    Rabiei, Faranak
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 23
  • [10] A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods
    Kumar, Sunil
    Kumar, Ranbir
    Agarwal, Ravi P.
    Samet, Bessem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5564 - 5578